Table 12: $\mathbf{gp160}$

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
231 M85	gp160(30-51)	gp120(30–51 LAI)	ATEKLWVTVYYGVPVW- KEATTT	no	451 Env	murine(IgG ₁)
	Donor: Fulvia di Ma	rzo Veronese				
	References: [di Marz (1997)]	to Veronese (1992), Moore	(1994c), Moore (1994d), Moor	re & Sodroski(19	996), Ditzel (1997), '	Wyatt
	• M85: Immunobly Veronese92	ot and RIP reactive for s	trains IIIB, 451, MN, RF, and	l RUTZ – binds	deglycosylated gp	120 –
		n – mutation 40 Y/D imp rmational component –Mo	airs binding – the relative affi pore94a	nity for denatur	ed/native gp120 is	< .01,
	• M85: Binding in anti-18 MAbs –N	<u> </u>	enhanced by conformationally	sensitive anti-V	/3 MAb 5G11, and	some
	 M85: Binds efficiently binding –Wyatt9 	. 01	soluble gp120+gp41, suggesti	ng its gp120 ep	itope is blocked by	gp41
232 7E2/4	gp160(31–50)	gp120(31–50 LAI)	TEKLWVTVYYGVPVWK- EATT	-	Env glycopro	murine(IgG)
	Donor: S. Ranjbar, N	IIBSC, UK				
	References: [Moore	. , -				
	-Moore94a	·	or denatured/native gp120 is .0	7, suggesting co	onformational comp	onent
	• 7E2/4: UK Medi	cal Research Council AID	S reagent: ARP3050			
233 M92	gp160(41–50) Donor: Fulvia di Ma	gp120(31–50 LAI)	GVPVWKEATT	no	451 Env	$rat(IgG_1)$
		zo Veronese (1992), Moore	e (1994c), Moore (1994d)]			
		_	ut precipitates deglycosylated g	gp120 – reacts w	rith strains IIIB, 451	, MN,
	RF, and RUTZ –		. 100 : 1 34 - 04			
	 M92: The relative 	e affinity for denatured/na	tive on PDD is L_MooreQ/a			

MAb ID	HXB2 Location	Author's Locatio	n Sequence	Neutralizing	Immunogen	Species(Isotype)				
234 4D4#85	gp160(41-50)	gp120()	GVPVWKEATT		Env	murine(IgG)				
	Donor: S. Nigida an	nd L. Arthur, NCI, Freder	rick, MD USA							
	References: [Moore	(1994c), Moore (1994d)), Moore & Sodroski(1996), W	yatt (1997), Binle	y (1998)]					
	 4D4#85: C1 do Moore94a 	omain – the relative affin	nity, denatured/native gp120 is	s 0.1 – mutation 4	45 W/S impairs bind	ding –				
		ts binding of C1 MAb M 48d and 17b –Moore96	185, C1-C5 discontinuous epito	ope MAbs 181 an	d 212A, and CD4 b	inding				
			not soluble gp120+gp41, sugg o if the 19 C-term amino acids,							
	deleted –Wyatt9									
		• 4D4#85: A panel of MAbs were shown to bind with similar or greater affinity and similar competition profiles to a								
			ore gp120 protein (Delta V1, V) ngth folded monomer –Binley9		ich a core protein pro	oduces				
235 M86	gp160(42-61)	gp120()	VPVWKEATTTLFCASD KAY	OA- no	451 Env	murine(IgG ₁)				
	Donor: Fulvia di Ma	arzo Veronese								
	References: [di Mai	rzo Veronese (1992), Mo	ore (1994c)]							
			r strains IIIB, 451, MN, RF, a	and RUTZ – bind	s deglycosylated gp	0120 –				
	• M86: C1 domai	n – the relative affinity for	or denatured/native gp120 is 1 -	-Moore94a						
	an160(61, 70)	gp120()	YDTEVHNVWA	L	IIIB gp120	murine(IgG ₁)				
236 133/237	gp160(61–70)				Ci	marme(1gG ₁)				
236 133/237	References: [Niedri	g (1992b), Moore (1994c	c), Moore (1994d)]			marme(ISC ₁)				
236 133/237	References: [Niedri • 133/237: Region	g (1992b), Moore (1994on of overlap for reactive			strains –Niedrig92					

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype)
237 133/290	 (1997), Binley (1998) 133/290: Region 133/290: The re—Moore94a 133/290: Used to—Wyatt95 133/290: Recipro is enhanced by so 133/290: Binds of binding —Wyatt9 133/290: A pane deglycosylated of 	of overlap for reactive pelative affinity for denated and capture assaucal binding inhibition wome C5 and C1 binding efficiently to sgp120 but 7 of MAbs were shown a variable loop deleted co	YDTEVHNVWA), Moore (1994c), either to bind gp120 to the with the antibody 522-149, that site antibodies –Moore96 not soluble gp120+gp41, suggetto bind with similar or greater a pre gp120 protein (Delta V1, V2 agth folded monomer –Binley98c)	utralization of lab a ntation in position ELISA plate, or t binds to a discon testing its gp120 e affinity and simila 2, and V3), thus su	strains –Niedrig92 69 W/L impairs bind to quantify bound gp tinuous epitope – bind pitope is blocked by g	ling 120 ling p41 to a
238 133/11	gp160(64–78) References: [Niedrig • 133/11: Region of		EVHNVWATHACVPTD eptides is WATHA – weak neut	L ralization of lab st	IIIB gp120 rains –Niedrig92	murine(IgG ₁)
239 D/3G5	gp160(73-82)	gp120()	ACVPTDPNPQ	no	Baculovirus- expressed rgp120 LAI	murine(IgG ₁)
	References: [BristowD/3G5: C1 MAb	\ /-	the humoral immune response	to rgp120 and rgp	160 –Bristow94	
240 D/6A11	gp160(73–82)	gp120()	ACVPTDPNPQ	no	Baculovirus- expressed rgp120 LAI	murine()
	References: [Bristow • D/6A11: C1 MA		of the humoral immune response	e to rgp120 and rg		
241 D/5E12	gp160(73–92)	gp120()	ACVPTDPNPQEVVLVN TEN	V- no	Baculovirus- expressed rgp120 LAI	murine()
	References: [Bristow ◆ D/5E12: C1 MA	, , =	f the humoral immune response	e to rgp120 and rg		

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
242 L5.1	gp160(79–93) References: [Akerblo	gp120() om (1990)]	PNPQEVVLVNVTENF		vaccinia gp160	murine(IgG)
243 4A7C6	 4A7C6: Bound p 4A7C6: The relation 4A7C6: C1 region impaired binding 4A7C6: Reciprode 135/9–Moore96 	referentially to denatured tive affinity for denatured/ on epitope (88 N/P substi –Moore94c	(native gp120 is 7.9 – mutation tutions abrogates binding), but the antibody 133/192 – enhan	n 88 N/P impairs ut substitutions 3	binding –Moore94a 880 G/F and 420 I/R	also
244 1D10	• 1D10: Cross-bloo	cks 5B3 in IIIB-rsgp160 E	PQEVVLVNVTENFDMW KNDM), Nakamura (1992), Moore (LISA – type specific in rgp12 ative gp120 is 13 – mutation 8	1994c)] 0 ELISA binding		rat()
245 B242	gp160(83–92)	gp120()	EVVLVNVTEN	no	Baculovirus- expressed mis- folded rgp160 IIIB:NL43, MicroGenSys	$murine(IgG_1)$
	References: [Bristow • B242: C1 MAb g	· /-	humoral immune response to	rgp120 and rgp1	·	

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
246 133/192	gp160(91–100) Donor: Matthias Nied	gp120()	ENFDMWKNDM	L	IIIB gp120	$murine(IgG_1)$			
		•	Moore (1994c), Moore & S	odroski(1996), Trkol	a (1996a), Binley (199	97a),			
	Binley (1998)]								
		-	ultiple peptides – weak net		ain –Niedrig92				
		•	l/native gp120 is 1.8 –Moo 113 D/A or R, 117 K/W, 4		noir hinding other su	hat:			
	9	oinding –Moore94c	113 D/A 01 K, 117 K/W, 4	+20 1/K, 427 W/S IIII	pan binding, biner su	USU-			
		<u> </u>	th the antibody 4A7C6 –	enhanced by some a	nti-C5 and-C1 antibo	odies			
	-Moore96	C	•	·					
		t neutralize JR-FL nor blo	ock gp120 interaction with	CCR-5 in a MIP-1 β -	CCR-5 competition s	tudy			
	-Trkola96b	of MAha wana ahawan ta	hind with similar or areats	on offinity and similar	u aammatitian muafilaa	too			
	-		bind with similar or greate gp120 protein (Delta V1,	•					
			h folded monomer –Binley		en a core protein prod	uces			
247 C6	gp160(91–100)	gp120()	ENFDMWKNDM		mis-folded LAI	$murine(IgG_1)$			
	References: [Pincus &	& McClure(1993), Abacio	oglu (1994), Moore (1994c	c), Pincus (1996)]					
			d by peptide scanning, FN	9	u94				
		 C6: The relative affinity for denatured/native gp120 is 0.9 –Moore94a C6: There is FNM/FDM polymorphism in LAI-based peptides – N is essential (J. P. Moore, per. comm.) 							
			LAI-based peptides – N is infected cells – when linke			Hinto			
		4 has no effect –Pincus 93		ed to fichi A, the him	iunotoxin did not med	mate			
	_	esearch and Reference Re							
248 B2	gp160(91-100)	gp120()	ENFDMWKNDM		mis-folded LAI	$murine(IgG_{2b})$			
					rgp160				
			Moore (1994c), Moore (19	•					
			d by peptide scanning, FN	9	u94				
		•	ve gp120 is 1.4 –Moore94a LAI-based peptides, and N		oore per comm)				
	■ DZ. THEIE IS FINIV	n ingiring pury porymorphilism in	LAI-based pepudes, and I	v 15 essential (J. P. IVI	oore, per commi.)				

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
249 B10	gp160(91–100)	gp120()	ENFDMWKNDM		mis-folded LAI	$murine(Ig G_1)$
	B10: C1 region -B10: The relative	e affinity for denatured/na	c)] ped by peptide scanning, FNMV tive gp120 is 0.4 –Moore94a n LAI-based peptides, and N is			
250 489.1(961)		(1994c)] relative affinity for denatu	ENFDMWKNDM ured/native gp120 is 1 –Moore9 erence Reagent Program: 961	4 a	Env	murine(IgG)
251 T1.1	T1.1: Also reacteT1.1: No ADCC	activity – reactive peptide	ENFDMWKNDM 0), Moore (1994c)] 20(234-248) NGTGPCTNVST e: NVTENFNMWKNDMVEQ lenatured/native gp120 is 1 –Mo	, IIIB –Broliden		murine(IgG)
252 T7.1	_		ENFDMWKNDM 90), Moore (1994c), Moore (19 tive gp120 is 4.0 –Moore94a	94d)]	Env	murine(IgG)
253 T9	 References: [Akerble T9: There appear T9: The relative T9: C1 region - 4 	to be two T9s affinity of denatured/nativ	ENFDMWKNDM Jorma Hinkula 90), Moore (1994c), Moore (19 re gp120 is 7.9 –Moore94a 262 N/T, 475 M/S, 485 1.83, and			murine(IgG)

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
254 5B3	• 5B3: Blocks gp?	gp120() n (1991), Nakamura (1992) 120 -CD4 binding —Berman	91		IIIB-rspg160	murine(IgG)
	 localized bindi 	ks 1D10 in competitive IIIE ng to residues 72–106 –Nal e affinity of denatured/nativ	kamura92		IIIB-gp120 sCD4 bindi	ng
255 MF49.1		gp120() t (1989), Moore (1994c)] ative affinity of denatured/r	ENFDMWKNDM native gp120 is 3.8 –Moo	re94a	Env	murine(IgG)
256 GV4D3	gp160(92–100)	gp120(92–100 IIIB)	NFNMWKNDM		gp120 complexed with MAb M77	murine()
		ova (1996)] anti-V3 MAb M77 was bo MAbs GV4H4 and GV5F9				
257 B9	gp160(93–96)	gp120()	FNMW		mis-folded LAI rgp160	$murine(IgG_1)$
	References: [Abacid • B9: C1 region –	oglu (1994)] epitope boundaries mapped	l by peptide scanning –A	bacioglu94		
258 B27	gp160(93–96)	gp120()	FNMW	no	Baculovirus- expressed mis- folded rgp160 IIIB: NL43, MicroGenSys	murine(IgG ₁)
	• B27: C1 region	oglu (1994), Bristow (1994) – epitope boundaries mappe erated in the context of a stu	ed by peptide scanning -A	_	·	94
259 B35	gp160(93–98)	gp120()	FNMWKN		mis-folded LAI rgp160	murine(IgG ₁)
	References: [Abacid • B35: C1 region	oglu (1994)] – epitope boundaries mappe	ed by peptide scanning —	Abacioglu94	-	

MAb	ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
260 D/4B5	5	gp160(93–101)	gp120()	FNMWKNDMV	no	Baculovirus- expressed rgp120 LAI	murine()
		References: [Bristow • D/4B5: C1 MAb	, , -	e humoral immune respon	se to rgp120 and rgp		
261 D/6B2	2	gp160(93–101)	gp120()	FNMWKNDMV	no	Baculovirus- expressed rgp120 LAI	$murine(IgG_1)$
		References: [Bristow ● D/6B2: C1 MAb		e humoral immune respon	se to rgp120 and rgp	160 –Bristow94	
262 D/5A1	11	gp160(93–101)	gp120()	FNMWKNDMV	no	Baculovirus- expressed rgp120 LAI	murine()
		References: [Bristow • D/5A11: C1 MAI		he humoral immune respo	onse to rgp120 and rg		
263 B20		gp160(101–110)	gp120()	VEQMHEDIIS		mis-folded LAI rgp160	$murine(IgG_{2a})$
		• B20: C1 region –		ol ed by peptide scanning – ive gp120 is 1 –Moore94a		glu94	
264 B18		gp160(101–110)	gp120()	VEQMHEDIIS		mis-folded LAI rgp160	murine(IgG _{2a})
		• B18: C1 region –		o] ed by peptide scanning, H ive gp120 is 1 –Moore94a		lu94	
265 MF39	9.1	 MF39.1: Called 3 infection of normagp120 do not inhi 	ally susceptible CD4 nega bit gp120 binding to GalC	VEQMHEDIIS ore (1994c)] ame as MF39.1 – MAbs ag tive cells from the brain an der – binding of GalCer to native gp120 is 30 –Moor	nd colon – MAbs agai gp120 does not inhib	inst the N-terminal hal	f of

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
266 T2.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV		Env	murine(IgG)
	References: [Akerblo	e affinity for denatured/n	Jorma Hinkula 90), Moore (1994c), Moore (19 ative gp120 is .27 – mutations	, -	E/A, and 117 D/A in	npair
267 6D8	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV		IIIB-rgp120	rat()
	• 6D8: Highly cros		1992), Moore (1994c)] Tains by rgp120 ELISA –Nakar Thative gp120 is 15 – mutation		113 D/A impair bir	nding
268 M96	gp160(101-120)	gp120()	VEQMHEDIISLWDQSLK- PCV	no	451 Env	$rat(IgG_{2a})$
	• M96: Immunoblo	o Veronese (1992), Moore of reactive for strains IIIB,	e (1994c), Moore (1994d)] 451, MN, RF, and RUTZ –Ve enatured/native gp120 is 6 –M			
269 37.1.1(ARP 327)	gp160(101-120)	gp120()	VEQMHEDIISLWDQSLK- PCV		Env glycopro	murine(IgG)
	37.1.1: Called 3737.1.1: The relati binding –Moore9	(1989), Moore & Ho(199 .1 – bound preferentially ve affinity for denatured/i	to denatured IIIB gp120 –Moo native gp120 is 8.6 – mutations		D/A) and 117 K/W in	npair

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
270 187.2.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV	-	Env glycopro	murine(IgG)
	 References: [Thiriart 187.2.1: Called 1 187.2.1: Called 1 infection of norm gp120 do not inhi 187.2.1: The relabinding –Moore9 	87.1, and is probably the sa 87.1, and is probably the sally susceptible CD4 negabit gp120 binding to GalC tive affinity for denatured	23), Cook (1994), Moore (1994), ame as 187.2.1 – bound preference ame as 187.2.1 – MAbs againstive cells from the brain and color – binding of GalCer to gp12/native gp120 is 7 – mutations	ntially to denatur of the glycosphin olon – MAbs aga 20 does not inhib	red IIIB gp120 –Moo golipid GalCer blocl inst the N-terminal h bit MAb binding –Co	c HIV nalf of pok94
271 MF58.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV	-	Env	murine(IgG)
	References: [Thiriart	(1989), Moore (1994c)]				
272 MF77.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV	-	Env	murine(IgG)
		(1989), Moore (1994c)] ative affinity for denatured	/native gp120 is 11 –Moore94	a		
273 MF119.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV	-	Env	murine(IgG)
	-	•	d/native gp120 is 30 – mutation	ns 113 D/A, 113	D/R, and 117 K/W i	mpair
274 MF4.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV	-	Env	murine(IgG)
	_	(1989), Moore (1994c)] ive affinity for denatured/	native gp120 is 8 –Moore94a			
275 MF53.1	gp160(101–120)	gp120()	VEQMHEDIISLWDQSLK- PCV		Env	murine(IgG)
	_	(1989), Moore (1994c)] ative affinity for denatured	/native gp120 is 10 –Moore94	a		

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
276 11/65	gp160(102–121)	gp120(311–321 HXB10)	EQMHEDIISLWDQSLKP- CVK	-	rgp120 BH10	$\operatorname{rat}(\operatorname{IgG}_{2b})$
	References: [McKea	ting (1992a), McKeating (199	3b), Peet (1998)]			
	• 11/65: Binds onl original?) –McK	y soluble gp120, not virion bo eating92a	ound – used to quantify gp120) shedding – (nu	mbering is incorrect in	
	• 11/65: Called 11 immunodominan	/65a/5h – The most variable t V3 loop less immunogenic – d – 11/65 was not affected by	these changes did not affect	the ability of sCl	D4 or MAbs to V1/V2,	
		sponse relative to WT, and no			O1	
		cal Research Council AIDS re		conserved region	1000	
277 W1	gp160(102–121)	gp120()	EQMHEDIISLWDQSLKP- CVK	-	Env	murine(IgG)
	Donor: D. Weiner, U References: [Moore • W1: The relative -Moore94a		p120 is 6 – mutations 113 D/A	., 113 D/R, and 1	17 K/W impair binding	
278 T11	gp160(102–125)	gp120(102–125)	EQMHEDIISLWDQSLKP- CVKLTPL	-	rec gp140	murine()
	T11: Generated the Ab responseT11: The sulfate	iv. of Pennsylvania 994), Jagodzinski (1996)] during a study of the influence – an oligomer with no gp120/gd d polysaccharide, curdlan sulf of the V3 loop from gp120 res	gp41 cleavage site was used a tate (CRDS), binds to the Enve	s the immunoger clope of T-tropic	n –Earl94 viruses and neutralizes	
279 GV1A8	gp160(105–113)	gp120(105–113 IIIB)	HEDIISLWD		gp120 complexed with MAb M77	murine()
		va (1996)] anti-V3 MAb M77 was bound MAbs GV7A4 and GV5H5 ar			nulated many MAbs to	

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype)			
280 135/9	gp160(111–120) Donor: Matthias Nie	gp120() drig	LWDQSLKPCV	L	IIIB gp120	$murine(IgG_1)$			
		(1992b), Moore (1994c)	, Moore (1994d), Moore & S	Sodroski(1996), Trkol	a (1996a), Binley (199	7a),			
	Kropelin (1998)]		4 400) NAMED WAY WAS (**************************************					
	-Niedrig92		4-123) MHEDIISLWD (co	•					
			d/native gp120 is 15 – mu	itation 113 D/R impa	airs binding to native	and			
		$^{\prime}$ /A only to denatured –M	or R, and 117 K/W impair	r hinding some subs	titutions enhance hind	dina			
	-Moore94c	ions 100 L/A, 113 D/A	or K, and 117 K w impan	i omanig, some saos	titutions cimanee onic	unig			
	_	•	i-C1 and anti-C5 antibodies	_	of some anti-V3, anti	i-C4			
			cted alpha-helix in C1 –Mo		GGD #				
	• 135/9: Does not -Trkola96b	neutralize JR-FL nor blo	ock gp120 interaction with	CCR-5 in a MIP-1 β -	CCR-5 competition st	tudy			
		of MAbs were shown to	bind with similar or greate	er affinity and similar	competition profiles	to a			
	• 135/9: A panel of MAbs were shown to bind with similar or greater affinity and similar competition profiles to a deglycosylated or variable loop deleted core gp120 protein (Delta V1, V2, and V3), thus such a core protein produces								
	deglycosylated or	r variable loop deleted co	re gp120 protein (Delta V1	, V2, and V3), thus su	ch a core protein prodi	uces			
	a structure closel	y approximating full leng	gth folded monomer –Binle	ey98					
	a structure closel135/9: Noted to	y approximating full lenge bind to C1 peptide HEL	gth folded monomer –Binle DIISLWDQSLK – blocks	ey98 gp120 interaction wit	th CD4+ cells – block	king			
	a structure closel135/9: Noted to activity is additiveness.	y approximating full lenge bind to C1 peptide HEL	gth folded monomer –Binle	ey98 gp120 interaction wit	th CD4+ cells – block	king			
	a structure closel • 135/9: Noted to activity is additiv –Kropelin98	y approximating full length bind to C1 peptide HEI when combined with a	gth folded monomer –Binle DIISLWDQSLK – blocks g antibodies which bind in the	ey98 gp120 interaction wit	th CD4+ cells – block	king p12)			
	a structure closel • 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriard	y approximating full length bind to C1 peptide HEI e when combined with a gp120() (1989), Moore (1994c)	gth folded monomer –Binle DIISLWDQSLK – blocks g antibodies which bind in the LWDQSLKPCV	ey98 gp120 interaction wit e C4 region of gp120	th CD4+ cells – block (F105, 388/389, and b	king			
	a structure closel • 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriard	y approximating full length bind to C1 peptide HEI e when combined with a gp120() (1989), Moore (1994c)	gth folded monomer –Binle DIISLWDQSLK – blocks antibodies which bind in the LWDQSLKPCV	ey98 gp120 interaction wit e C4 region of gp120	th CD4+ cells – block (F105, 388/389, and b	king p12)			
281 MF46.1 282 C4	a structure closel • 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriard	y approximating full length bind to C1 peptide HEI e when combined with a gp120() (1989), Moore (1994c)	gth folded monomer –Binle DIISLWDQSLK – blocks g antibodies which bind in the LWDQSLKPCV	ey98 gp120 interaction wit e C4 region of gp120	th CD4+ cells – block (F105, 388/389, and b	king p12)			
	a structure closel • 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriart • MF46.1: The relationship of the structure of the	y approximating full length bind to C1 peptide HEI to when combined with a gp120() at (1989), Moore (1994c)] ative affinity for denature gp120()	gth folded monomer –Binle DIISLWDQSLK – blocks antibodies which bind in the LWDQSLKPCV ded/native gp120 is 8.5 –Monomer	ey98 gp120 interaction wit e C4 region of gp120	th CD4+ cells – block (F105, 388/389, and believed) Env	murine(IgG)			
	a structure closel • 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriard • MF46.1: The related pp160(111–120) Donor: George Lewin References: [Abacion process: [Abacion process] References: [Abacion process process]	y approximating full length bind to C1 peptide HEI bind to C1 peptide HEI be when combined with a gp120() at (1989), Moore (1994c) ative affinity for denature gp120() s glu (1994), Moore & Ho	gth folded monomer –Binle DIISLWDQSLK – blocks intibodies which bind in the LWDQSLKPCV ed/native gp120 is 8.5 –Mor LWDQSLKPCV (1993), Moore (1994c)]	ey98 gp120 interaction wit e C4 region of gp120	th CD4+ cells – block (F105, 388/389, and believed) Env	murine(IgG)			
	a structure closel 135/9: Noted to activity is additiv —Kropelin98 gp160(111–120) References: [Thiriart MF46.1: The related gp160(111–120) Donor: George Lewi References: [Abacio C4: Bound prefe	y approximating full length bind to C1 peptide HEI bind to C1 peptide With a gp120() ative affinity for denature gp120() statistically to denatured III bind to C1 peptide HEI bind to	gth folded monomer –Binle DIISLWDQSLK – blocks gantibodies which bind in the LWDQSLKPCV ed/native gp120 is 8.5 –Moo LWDQSLKPCV ed/93), Moore (1994c)] B gp120 –Moore93a	ey98 gp120 interaction wite C4 region of gp120 ore94a	Eh CD4+ cells – block (F105, 388/389, and beautiful to the control of the control	murine(IgG)			
	a structure closel 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriart MF46.1: The related preferences: [Abacio] C4: Bound preferences C4: C1 region –	y approximating full length bind to C1 peptide HEI bind to C1 peptide With a gp120() at (1989), Moore (1994c) bind to denature gp120() strength of the second	gth folded monomer –Binle DIISLWDQSLK – blocks intibodies which bind in the LWDQSLKPCV ed/native gp120 is 8.5 –Mor LWDQSLKPCV (1993), Moore (1994c)]	ey98 gp120 interaction wite C4 region of gp120 ore94a H10 core IISLW –Aba	Eh CD4+ cells – block (F105, 388/389, and beautiful to the control of the control	murine(IgG)			
	a structure closel 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriart MF46.1: The related preferences: [Abacio] C4: Bound preferences C4: C1 region –	y approximating full length bind to C1 peptide HEI bind to C1 peptide With a gp120() at (1989), Moore (1994c) bind to denature gp120() strength of the second	gth folded monomer –Binled DIISLWDQSLK – blocks gantibodies which bind in the LWDQSLKPCV ed/native gp120 is 8.5 –Moo LWDQSLKPCV (1993), Moore (1994c)] B gp120 –Moore93a ped by peptide scanning, BI	ey98 gp120 interaction wite C4 region of gp120 ore94a H10 core IISLW –Aba	Eh CD4+ cells – block (F105, 388/389, and beautiful to the control of the control	murine(IgG)			
282 C4	a structure closel 135/9: Noted to activity is additiv –Kropelin98 gp160(111–120) References: [Thiriart MF46.1: The relative gp160(111–120) Donor: George Lewi References: [Abacio C4: Bound prefe C4: C1 region – C4: The relative gp160(111–120) References: [Thiriart	y approximating full length bind to C1 peptide HEI bind to C1 peptide With a gp120() s glu (1994), Moore & Horentially to denatured III beptiope boundaries mappending affinity for denatured/na gp120() s (1989), Moore (1994c)	gth folded monomer –Binled DIISLWDQSLK – blocks in the bind in the	ey98 gp120 interaction wite C4 region of gp120 ore94a H10 core IISLW –Abaa	Eh CD4+ cells – block (F105, 388/389, and be Env mis-folded LAI rgp160	murine(IgG) murine(IgG ₁)			

MAb I	ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
284 12G10	1	_	gp120() (1989), Moore (1994c)]	LWDQSLKPCV		Env	murine(IgG)			
		• 12G10: The relati	ive affinity for denatured/	native gp120 is 17 – mutation	117 K/W impairs	s binding –Moore94a				
285 7C10		-	gp120() (1989), Moore (1994c)]	LWDQSLKPCV		Env	murine(IgG)			
		• 7C10: The relative affinity for denatured/native gp120 is 5.8 – mutation 117 K/W impairs binding –Moore94a								
286 6D5		gp160(122–141)	gp120()	LTPLCVSLKCTDLKNDT NTN	-	Env	murine(IgG)			
		 Donor: S. Nigida and L. Arthur, NCI, Frederick, MD USA References: [Moore (1994c), Moore (1994d)] 6D5: The relative affinity for denatured/native gp120 is 15 – mutations Delta119-205 and 125 L/G impair binding –Moore94a 								
287 B33		gp160(123–142)	gp120()	TPLCVSLKCTDLGNATN TNS	I- no	Baculovirus- expressed mis- folded rgp160 IIIB:NL43, MicroGenSys	murine($\operatorname{IgG}_{2b}\kappa$)			
		 Donor: Daniels References: [Abacioglu (1994), Bristow (1994)] B33: There are two MAbs in the literature named B33. See also gp41, LAI 123–142 –Abacioglu94 B33: MAbs generated in the context of a study of the humoral immune response to rgp120 and rgp160 –Bristow94 B33: UK Medical Research Council AIDS reagent: ARP304, gp160/41 binding 								
288 2H1B		gp160(155–161) References: [Matsush • 2H1B: Binds in V		RNISFKA nv on the cell surface –Matsus	no shita95	Peptide	murine()			

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
289	697-D	gp160(161–180)	gp120()	ISTSIRGKVQKEYAFFY- KLD	P (weak)	HIV-1 infection	$\text{human}(IgG_1\lambda)$
		References: [Gorny (1987)] (1997b), Nyambi (1998) 697-D: Conformation isolates, but none of YSL/GSS abrogate moieties inhibits bin 697-D: Not neutrali 697-D: Review: cal 697-D: Partial inhibits 697-D: Study show with oligomeric Emperimental in the service of the service	994), Forthal (1995), Mo onal with weak reactivity of 4 lab strains – V2 subs binding – anti-C4 MAb nding –Gorny94 izing, no ADCC activity lled 697/30D – neutralization of gp120 interactions is neutralization is not provided by binding – 697-D bound other training but at the cole virion-ELISA methols of A, B, D, F, G, and H-	c) or Cellular Products Inc, But bore & Ho(1995), Trkola (1997),	KEYAFFYKLD 180 LD/DL, 183 binding – mild ty –Forthal95 dapted strains –N CCR-5 competition RFL monomerical mer or neutralizated for their abili 357 tended to bi	– neutralized 3/4 primar /184 PI/SG, and 192–19 oxidation of carbohydrat Moore95c on study –Trkola96b c gp120, but is associate e JRFL –Fouts97 arren97 ty to bind to a panel of nd weakly with a similar	y 4 e d d

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
290 C108G	References: [Warrier Tilley(1998)] C108G: High aff binding disrupted C108G: Strain sp of conserved glyd C108G: Characte C108G: Synergis MAbs, 1125H an C108G: Viral bin showed some con C108G: Inhibits C108G: A study	inity, potent neutralization by removal of N-linked ecificity: LAI, Bal, HXB cosylation site at 156 increasing and the stic neutralization of HIV d 5145A – neutralization ding inhibition by C108 relation except 2F5) –Ug HX10 binding to both CI of 6 anti-Env MAbs and	on of HIV-1 IIIB – biglycans – peptide bin 2 – conformational classed epitope exposus region –Warrier95 – 1 when combined was correlated with further enhanced by G was correlated with colini97 – 24 positive and negaticheir ability to bind output for the combined with the combined w	L (1996), Ugolini (1997), M nding not affected by redu ding lower affinity than gly naracter – glycosylation site are –Wu95 with anti-V3 MAbs 0.5β an presence of both 1125H ar h neutralization (all other ive HeLa cells–Mondor98 of direct ADCC against targes f – this is first demonstration	ction of disulfide becosylated Env – Warne at 160 critical – mu at C311E, or anti-Cland 0.5β – Warrier96 neutralizing MAbs	onds – rier94 tation D4BS tested
291 6C4/S	v2 specific MAb gp160(162–169) Donor: S. Ranjbar (N References: [Moore • 6C4/S: UK Medi	gp120() NIBSC, UK)	STSIRGKV DS reagent: ARP304	9	BH10 gp120	()
292 10/76b	gp160(162–170) References: [McKea • 10/76b: R to L st • 10/76b: Cross-co at residue 165 – S • 10/76b: Included • 10/76b: HX10 st • 10/76b: Neutrali background – Mc	gp120() ting (1993b), McKeating abstitution abrogated bino impetes with MAbs 10/76 hotton95 in cross-competition and rain specificity – binds na zes HXB2, but fails to a	STSIRGKVQ (1993a), Shotton (19ding – human sera reads and 11/4b – HXB2d neutralization studientive, deglycosylated neutralize chimeric v	L (HXB10) 95), Wu (1995), McKeatin cognize epitope –McKeatin neutralization escape muta es –Shotton95 or denatured gp120 –Wu9 irus with gp120 from prin	ng93a ant has the substitution	

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)	
293 11/4c	 11/4c: R to L sub 11/4c: HX10 stra 11/4c: Cross-com at residue 165 –Si 11/4c: Called 11/ immunodominant C1 and C4 to bind had a reduced res 	gp120(152–181) ing (1993b), Wu (1995), stitution abrogated binding in specificity – binds nationally between the specificity – binds 10/76b (1974), and the specific value of v	ng – human sera recognive, deglycosylated, or deglycosylated, or deglycosylated, or degrand 11/4b – HXB2 neurable amino acids in the nic – these changes did by V3 serine substitution on enhanced immunog	ize epitope –McKeating enatured gp120 –Wu95 itralization escape muta V3 loop were replaced not affect the ability of ons – mice injected with	nt has the substitution with serines to make sCD4 or MAbs to V1/n serine substituted gp	the V2,	
294 11/41e	gp160(162–170) gp120() STSIRGKVQ L (HXB10) rgp120 LAI:BH10 rat(IgG ₁) References: [McKeating (1993b), Shotton (1995), Wu (1995)] • 11/41e: R to L abrogated binding – human sera recognize the epitope –McKeating93a • 11/41e: Included in cross-competition and neutralization studies –Shotton95 • 11/41e: HX10 strain specificity – binds native and deglycosylated gp120 –Wu95						
295 11/4b	 gp160(162–170) gp120() STSIRGKVQ L (HXB10) rgp120 LAI:BH10 rat(IgG₂ References: [McKeating (1993b), Shotton (1995), Wu (1995), Moore & Sodroski(1996)] 11/4b: A change from R to L abrogated binding – human sera recognize epitope –McKeating93a 11/4b: Cross-competes with MAbs 10/76b and 11/4c – HXB2 neutralization escape mutant has the substitution I/T at residue 165 –Shotton95 11/4b: HXB10 strain specificity – binds native, deglycosylated, or denatured gp120 –Wu95 11/4b: Linear V2 epitope – reciprocal binding enhancement of anti-V2 discontinuous epitope antibodies (in contrast to BAT085) and CD4 inducible antibody 48d. Reciprocal inhibits BAT085 binding – inhibits CRA-3 binding CRA-3 does not inhibit 11/4b –Moore96 						
296 RSD-33	gp160(162–170) Donor: R. Daniels (N. References: [Moore (STSIRGKVQ		BH10 gp120	()	

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
297 12b	gp160(162–181)	gp120()	STSIRGKVQKEYAFFYK- LDI	L (HXB10)	BH10 rgp120	$rat(IgG_{2a})$
	• 12b: V2 MAb ne -Shotton95	HXB2, but fails to neutr	96)] on 179–180 LD to DL abrogates ralize chimeric virus with gp120			
298 G3-4	References: [Ho (1993), (1993), Thali (1993), Sattentau & Moore (1997), Ditzel (1997), • G3-4: Binding is conformational ference and G3-136 block • G3-4: Substitution dissociation —Sulf (1997), Ditzel (1997), Ditze	Moore (1993a), Moore (1995), Jagodzinski (1996) Wyatt (1997), Parren (1 s sensitive to removal o eatures –Ho91 s IIIB and RF, not MN – los (G3-4 gp120 binding – ons in residues 176 to 18 livan93 binding in the presence of cional, does not bind well binding to IIIB gp120 – marginal binding to per cionally sensitive – spora utralizing, IC 50 = 53 µg ation (582 A/T) that red ze –Thali94	992), McKeating (1992a), Moore (1994b), Gorny (1994), Thalis, Moore & Sodroski(1996), Poig (1998a)] If glycans by endo H – 50% new colocks sCD4-gp120, not as potent (1998a); as a sensitive to reduction of gp120 by the sensitive to reduction of gp120 b	(1994), Yoshiy mard (1996a), Butralization of 4 tas MAb 15e – Voy DTT –Ho92 stitutions in V2 tive with SF-2 gg 84 PI/SG substitutions de, B clade binding site M	rama (1994), Wu (inley (1997a), Stam /9 primary isolates /2 binding MAbs BA can result in gp120 p120, and does not in tution –Moore93b gp120s –Moore94b Abs does not alter	1995), latatos - has AT085 l-gp41 inhibit G3-4s

Cel	Ų	IJ
<u>e</u>	()
	g	D

MAb ID	HXB2 Location	Author's Location Se	quence	Neutralizing	Immunogen	Species(Isotype)
G3-4 cont.						
G3-4 cont.	deglycosylated V G3-4: Bound provirus –Sattentau G3-4: The sulfate virus – deletion of described as 176 G3-4: Binding of binding of select or BAT085 did a contrast to anti-V G3-4: Called G3 SF162 or SF128 G3-4: Binds bot by gp41 binding G3-4: The MAb	ted polysaccharide curdlan su of the V3 loop from gp120 re 5–184 FYKLDIIPI and 191–1 enhanced by selected antiboo ted V3, C4 and anti-CD4 bind d epitope as STSIRGKVKEY not significantly alter gp120 V3 MAbs –Poignard96b 3.4 – mediates gp120 virion of A in either primary macroph. th gp120 and soluble gp120+	ing importance of glycal rather than oligomerical rather than oligomeri	ans outside the VI form of LAI gp120 the Envelope of T-3-4 binding inhibit 26 and anti-CD4 bine 26 bligomer — binding as or expose the gp-2 to anti-V2 MAb (tatos 97 tly, suggesting its defined and anti-V2 material suggesting its defined anti-V2 material suggesting its defined anti-V2 material suggestion and anti-	V2 region –Wu95 0 – neutralizes Hx1 tropic viruses and r ion by CRDS – G3 nding site MAbs – g of V2 MAbs G3- 41 epitope of MAb G3-136 – not neutr gp120 epitope is not re highly correlated	0 cell-free neutralizes -4 epitope enhances 136, G3-4 550-69, in alizing for ot blocked 1 – authors

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)					
299 G3-136	gp160(170–180)	gp120()	QKEYAFFYKLD	L	purified IIIB gp120	murine(IgG)					
	Donor: Tanox Biosys	Donor: Tanox Biosystems Inc and David Ho, ADARC, NY									
	References: [Fung (References: [Fung (1992), Pirofski (1993), Thali (1993), Moore & Ho(1993), Moore (1993a), Yoshiyama (1994),									
	Sattentau & Moore (1995), Moore & Sodroski (1996), Poignard (1996a), Binley (1997a), Stamatatos (1997), Ditzel (1997),										
	Wyatt (1997), Parren (1998a)]										
	• G3-136: V2 regi	• G3-136: V2 region – binds and neutralizes IIIB and RF in CEM-SS cells, but not MN – neutralization activity									
	against a few primary isolates in PBMC - sCD4 binding inhibits binding (contrast with BAT085) - deglycosylation										
		or reduction of gp120 by DTT diminishes reactivity –Fung92									
		• G3-136: Conformational, does not bind well to denatured gp120 – not reactive with SF-2 gp120, and does not inhibit									
	HIV-1 sera from binding to IIIB gp120 –Moore93a										
	• G3-136: Marginal binding to peptide, binding inhibited by 183/184 PI/SG substitution –Moore93b										
	• G3-136: Binding enhanced by selected antibodies to C1, C4, C5, V3 and anti-CD4 binding site MAbs – enhances										
	binding of selected V3, C4 and anti-CD4 binding site MAbs –Moore93b										
	• G3-136: HIV-1 RF V2 substitutions 177 Y/H and 179 L/P in the V2 loop of RF reduce affinity –Yoshiyama94										
	• G3-136: Bound preferentially to the monomeric rather than oligomeric form of LAI gp120 – neutralizes cell free Hx10 –Sattentau95a										
	• G3-136: Described epitope as STSIRGKVKEYAFFYKLDI – binds oligomer – binding of V2 MAbs G3-136, G3-4										
	or BAT123 did not significantly alter gp120 dissociation from virus or expose the gp41 epitope of MAb 50-69, in contrast to anti-V3 MAbs –Poignard96b										
		G3.136 – does not med	iate gp120 virion dissoc	iation in contrast to a	nti-V2 MAb G3-4 – n	ot					
	neutralizing for SF162 or SF128A in either primary macrophages or PBMC –Stamatatos97 • G3-136: Binds both gp120 and soluble gp120+gp41 complex efficiently, suggesting its gp120 epitope is not blocked										
	by gp41 binding -	•	1'	120 1 (1' 1'	1.2.1.1						
		Ab and Fab binding to the									
	authors suggest the epitope –Parren98	nat neutralization is deter 3	mined by the fraction of	Ab sites occupied on a	virion irrespective of the	ne					

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
300 BAT085	References: [Fung (1 (1994), Moore (1994d) Poignard (1996a), Bin BAT085: V2 region MN – deglycosyla BAT085: Called I and does not inhib BAT085: 7/8 V2 remove — Moore 93b BAT085: Peptide BH10 gp120 and BAT085: Multi-la BAT085: Interact BAT085: Neutral MAbs G3-4 and S BAT085: HXB10 BAT085: Bound Hx10 – Sattentau 9 BAT085: Binding G511 – reciprocal BAT085: Epitope BAT123 did not contrast to anti-Value and some series of the Maton Silvers	enhancement of CD4i Me suggested to be QKEY significantly alter gp120 MAbs—Poignard96b Ab and Fab binding to the lat neutralization is determined to the statement of the statement of the lat neutralization is determined to the statement of the lat neutralization is determined to the statement of the lat neutralization is determined to the lat neutralization is determined to the later of the l	re & Ho(1993), Pirofskina (1994), Wu (1995), San (1994), Wu (1995), San (1998a)] and responding to the property of the propert	some primary isolates, is reactivity –Fung92 denatured gp120 – not ree93a and, but BAT085 was the than BAT085, but BAT comparison – did not binderlap KEYAFFYKLD RF does not inhibit neor denatured gp120 –Womeric form of LAI gp2 aced by several anti-C1 e96 gomer – binding of V2 or expose the gp41 ep120 and neutralization	, Moore & Sodroski(1) but not MN or RF – b reactive with SF-2 gp e exception – type-spe 1085 has lower affinity d MN or SF2 –D 'Sou –Gorny94 utralization, in contra 17495 120 – neutralizes cell MAbs, and anti-V3 M 2 MAbs G3-136, G3- pitope of MAb 50-6 1 were highly correlate	996), binds b120, bcific y for za94 ast to free MAb b4 or 9, in ted —
301 60b		gp120() (1995)] I not neutralize HXB2 – I e binding, as do changes				

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)		
302	74		not neutralize HXB2 – did n side the minimum epitope –	EYAFFYKLDI not bind rgp120 ELISA – pos does not compete with 60b o		_	•		
303	38/12b	gp160(172–191)	gp120()	EYAFFYKLDIIPIDNDT- TSY		BH10 gp120	rat()		
		References: [Wu (1995)] • 38/12b: Broad specificity: HXB2, MN, SF162 – binds native and deglycosylated gp120 –Wu95							
304	304 38/60b	gp160(172–191)	gp120()	EYAFFYKLDIIPIDNDT- TSY		BH10 gp120	rat()		
		References: [Wu (1995)] • 38/60b: Strain specificity: HXB2 – binds native and deglycosylated gp120 –Wu95							
305	3D3.B8	_	gp120(211–220 LAI) edt (1990), Moore (1994c)] ative affinity denatured/nativ	EPIPIHYCAPA ve gp120 is greater than 10 -	-Moore94a	Env glycopro	murine(IgG)		
306	4C11.D8	_	gp120(211–220 LAI) edt (1990), Moore (1994c)] lative affinity denatured/nat	EPIPIHYCAPA ive gp120 is greater than 10	–Moore94a	Env glycopro	murine(IgM)		
307	322-151	_	gp120(201–220 LAI) bot Labs (1994c), Moore (1994d)] ative affinity denatured/nati	EPIPIHYCAPA ve gp120 is 30 –Moore94a		Env glycopro	murine(IgG)		
308	493-156	gp160(211–230)	gp120(211–230 LAI)	EPIPIHYCAPAGFAILK- CNN		Env glycopro	murine(IgG)		
		Donor: G. Robey, Abbot Labs References: [Moore (1994c)] • 493-156: The relative affinity denatured/native gp120 is >10 –Moore94a							

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
309 110.1	110.1: There is a110.1: A panel of	gp120(200–217) & McClure(1993), Pincus (nother antibody with this ID of immunotoxins were gene g was not directly proportion 93,Pincus96	that binds to Env at posit rated by linking Env MA	tions 491–500 in LA bs to ricin A – imm	nunotoxins mediated of	
310 GV4H3	gp160(219–226) References: [Denisor • GV4H3: When a linear epitopes –I	anti-V3 MAb M77 was bou		an immunogen, it st	gp120 complexed with MAb M77 imulated many MAbs	murine()
311 J1	gp160(222–231) gp120(222–231 LAI) GFAILKCNNK Peptide murine(IgC Donor: J. Hoxie, U. Penn. References: [Moore (1994c), Moore (1994d), Cook (1994)] • J1: The relative affinity denatured/native gp120 is 30 –Moore94a • J1: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells from the brain and colon – MAbs against the N-terminal half of gp120 do not inhibit gp120 binding to GalCer – binding of GalCer to gp120 does not inhibit MAb binding –Cook94					
312 J3	gp160(222–231) gp120(222–231 LAI) GFAILKCNNK Peptide murine Donor: J. Hoxie, U. Penn. References: [Moore (1994c), Cook (1994)] • J3: The relative affinity denatured/native gp120 is 30 –Moore94a • J3: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells from the brain and colon – MAbs against the N-terminal half of gp120 do not inhibit gp120 binding to GalCer – binding of GalCer to gp120 does not inhibit MAb binding –Cook94					
313 MF87.1	_	gp120(242–261 LAI) (1989), Moore (1994c)] lative affinity denatured/nat	_	ons 252 R/W, 257 T	Env	murine(IgG)

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
314 MF169.1	_		_	252 R/W, 257	Env Γ/G, and 257 T/R im	murine(IgG)
315 MF170.1	• MF170.1: The re		-			murine(IgG) pair
316 213.1	213.1: Bound pre213.1: The relati–Moore94a	(1989), Moore & Ho(199) eferentially to denatured II	3), Moore (1994c)] IB and SF2 gp120 –Moore93a we gp120 is 100 – mutations 2.	52 R/W, 257 T/	Env glycopro G or T/R impair bind	$\mbox{murine}(\mbox{Ig} G_1)$ \mbox{ling}
317 M89	• M89: Immunoble	to Veronese (1992), Moore of reactive, RIP negative, from the relative affinity for the relative	RPVVSTQLLLNGSLAEE-EVV e (1994c), Moore (1994d)] for strains IIIB, 451, MN, RF, and lenatured/native gp120 is >30	nd RUTZ –Vero		$\operatorname{murine}(\operatorname{IgG}_1)$ pair
318 B12	gp160(252–271) References: [Moore of the B12: C2 region of the binding –Moore9]	- the relative affinity for	RPVVSTQLLLNGSLAEE-EVV denatured/native gp120 is 27 –		mis-folded LAI rgp160 T/R and 262 N/T im	murine(IgG)

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
319 B13	gp160(252–271)	gp120()	RPVVSTQLLLNGSLA EVV	EE-	mis-folded LAI rgp160	murine(IgG _{2a})				
	 (1996), Connor (1998 • B13: Bound prefe • B13: The relative Moore94a • B13: C2 region - • B13: Called Bh1 	 References: [Pincus & McClure(1993), Moore & Ho(1993), Moore (1994c), Abacioglu (1994), Moore (1994d), Pincus (1996), Connor (1998)] B13: Bound preferentially to denatured IIIB gp120 – Moore93a B13: The relative affinity for denatured/native gp120 is 30 – mutations 257 T/R and 269 E/L impair binding – Moore94a B13: C2 region – epitope boundaries mapped by peptide scanning, core epitope: TQLLLN – Abacioglu94 B13: Called Bh13 – binds to gp120 but not to infected cells – when linked to ricin A, the immunotoxin did not mediate cell killing – sCD4 has no effect – Pincus93, Pincus96 								
320 C13	gp160(252–271)	gp120()	RPVVSTQLLLNGSLA EVV	EE-	mis-folded LAI	$murine(IgG_1)$				
	 References: [Moore & Ho(1993), Moore (1994c), Abacioglu (1994)] C13: Bound preferentially to denatured IIIB gp120 – Moore93a C13: The relative affinity for denatured/native gp120 is 36 – mutations 257 T/R, 267 E/L, and 269 E/L impair binding – Moore94a C13: Epitope boundary extended to RPVVSTQLLLNGSLAEEEVVIR, to take into account the effect of a point mutation – Abacioglu94 C13: NIH AIDS Research and Reference Reagent Program: 1209 									
321 B24	gp160(257–262)	gp120()	TQLLLN		mis-folded LAI rgp160	$murine(IgG_{2a})$				
	References: [Abacioglu (1994)] • B24: C2 region, epitope boundaries mapped by peptide scanning –Abacioglu94									
322 B3	gp160(257–262)	gp120()	TQLLLN		mis-folded LAI rgp160	$murine(IgG_1) \\$				
	References: [Abacioglu (1994)] • B3: C2 region, epitope boundaries mapped by peptide scanning –Abacioglu94									
323 B21	gp160(257–262)	gp120()	TQLLLN		mis-folded LAI rgp160	murine(IgG ₁)				
	_ ,	References: [Abacioglu (1994)] • B21: C2 region, epitope boundaries mapped by peptide scanning –Abacioglu94								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
324 B23	gp160(257–262)	gp120()	TQLLLN		mis-folded LAI rgp160	$murine(IgG_{2a})$
	References: [Abaciog • B23: C2 region, e	glu (1994)] epitope boundaries mappe	-Abacioglu94			
325 B25	gp160(257–262)	gp120()	TQLLLN		mis-folded LAI rgp160	$murine(IgG_1) \\$
	References: [Abacios • B25: C2 region, e	glu (1994)] epitope boundaries mappe	-Abacioglu94			
326 B29	gp160(257–263)	gp120()	TQLLLNG		mis-folded LAI rgp160	$murine(IgG_{2a})$
	References: [Abaciog • B29: C2 region, e	glu (1994)] epitope boundaries mappe	-Abacioglu94			
327 B26	gp160(257–263)	gp120()	TQLLLNG		mis-folded LAI rgp160	$murine(IgG_1)$
	References: [Abacios • B26: C2 region, 6	glu (1994)] epitope boundaries mappe				
328 B36	gp160(257–263)	gp120()	TQLLLNG		mis-folded LAI rgp160	$murine(IgG_1)$
	References: [Abaciog • B36: C2 region, 6	glu (1994)] epitope boundaries mappe	-Abacioglu94			
329 110.E	gp160(262–281)	gp120()	NGSLAEEEVVIRSY DNA	VNFT-	Env glycopro	murine(IgG)
		[1994c), Moore (1994d)] we affinity for denatured/n				
330 110.C	References: [Moore (• 110.C: The relative	gp120() Hydridolabs, Institut Past (1994c), Moore (1994d), Ve affinity for denatured/natly reduces LAI viral bind	Valenzuela (1998)] ative gp120 is 1 –Moor		Env glycopro	murine(IgG)

MAb 1	ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
331 IIIB-V	73-26	gp160(291–307) References: [Laman	, , -	SVEINCTRPNNNTRKSI	no .o.2	Peptide	murine(IgG ₁)			
332 IIIB-V	73-21	gp160(294–299) Donor: J. Laman References: [Laman • IIIB-V3-21: Bind • IIIB-V3-21: Doe	gp120(299–304 IIIB (1992), Laman (1993), Va Is to the base of the V3 lo Is to NP40 treated gp120, s not block HIV-1 LAI bi	s) INCTRP alenzuela (1998)] op on denatured gp120 –Laman and epitope is probably obscure nding or entry into CEM cells –	no 192 ed by local glyco	Peptide osylation –Laman93	murine(IgG ₁)			
				il AIDS reagent: ARP3048 erence Reagent Program: 1725						
333 polyclo	onal	gp160(296–327)	gp120()	CNYNKRKRIHIGPGRAF- YTTKNIIGTIC	- L		rabbit(IgA and IgG)			
		References: [FitzGerald (1998)] • Polyclonal response to MN, or Thai E V3 loop inserted into Pseudomonas Exotoxin for vaccination – inserts of 14 or 26 amino acids were used from MN or a Thai E strain, constrained by disulfide bond – sera from vaccinated rabbit were reactive with strain-specific gp120 – administration to mucosal surfaces elicits IgA –FitzGerald98								
334 polyclo	onal	gp160(297–320)	gp120()	NYNKRKRIHIGPGRAFY- TTK	- L	V3 peptide vaccine	human()			
		 References: [Bartlett (1998)] V3 peptide vaccine (MN, RF, EV91, and Can0A) with a C4 helper T cell epitope were used to vaccinate HLA-B7 HIV-infected patients – V3 Ab levels and the anti-HIV proliferative response, but no decrease in HIV-1 RNA levels or increase in CD4 levels was observed –Bartlett98 								
335 polyclo	onal	gp160(297–320)	gp120()	NYNKRKRIHIGPGRAFY- TTK	-	HIV-1 exposure	human(IgA)			
		 References: [Kaul (1999)] HIV-1 Env-specific mucosal IgA found in genital track of 16/21 HIV-1 resistant chronically exposed Kenyan sex workers – 11/21 had detectable Th responses –Kaul99 								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
336 MO97/V3	gp160(299–308)	gp120()	PNNNTRKSIR	no	rpB1 (IIIB Env 286-467)	human(IgM)			
	References: [Ohlin (1992)]							
	• MO97: Generate	d through in vitro "immu	nization" of uninfected-donor ly	ymphocytes –Oh	nlin92				
337 polyclonal	gp160(299–331)	gp120()	PNNNTRKSIRIQRGPGR- AFVTIGKIGNMRQAHC	L	Peptide	rabbit(IgG)			
	References: [Neurath & Strick(1990)] • 21 V3 loop variant peptides spanning this region were tested and serological cross-reactivity correlated with divergence -Neurath90								
338 8/38c	References: [McKeat	ting (1992a), Sattentau & irion gp120 and neutralized ly well to monomer and potent neutralization of of the V1V2 regions did not and Fab binding to the oliginalization is determined by 38/1c: The most variable t V3 loop less immunoged, and anti-V3 MAb 8/33		4 – McKeating 92 on rate than other object on a virion is were replaced out the ability of d by V3 serine s	er anti-V3 antibodies, appared to intact rec glaighly correlated – autirrespective of the epith with serines to make sCD4 or MAbs to V1 ubstitutions C-term to	thors itope e the /V2, o the			

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
339 8/64b	gp160(300–315) gp120() NNNTRKRIRIQRGPGR L rBH10 gp120 rat(IgM) References: [McKeating (1992a), Peet (1998)]									
	• 8/64b: The most loop less immuno anti-V3 MAb 8/6 with serine substite regions –Peet98	variable amino acids in th genic – these changes did 4b binding was abrogated	es only in the presence of sCD to V3 loop were replaced with not affect the ability of sCD4 to by V3 serine substitutions C-1 response relative to WT, and the S reagent: ARP3036	serines to make or MAbs to V1/V term to the tip o	the immunodomina 72, C1 and C4 to bind f the loop – mice in	d, and jected				
340 polyclonal	gp160(300-322)	gp120()	CNNTRKSIRIQRGPGRA- FVTIGK	L	?	guinea pig(IgG)				
	 Donor: D. Bolognesi and T. Matthews, Duke University References: [Allaway (1993)] Synergy with combinations of CD4-based molecules in inhibition of HIV-1 Env mediated cell fusion –Allaway93 									

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
341	9284	gp160(301–312)	gp120()	NNTRKSIRIQRG	L	disrupted IIIB virion	murine(IgG ₁)

Donor: Dupont de Nemours, Les Ulis, France or Wilmington, Delaware

References: [Skinner (1988b), Skinner (1988a), Sattentau & Moore(1991), Wyatt (1992), McKeating (1992a), Sattentau (1993), Moore (1993b), Trujillo (1993), Thali (1993), VanCott (1994), Thali (1994), Cook (1994), Okada (1994), Sorensen (1994), Sattentau & Moore(1995), VanCott (1995), Fontenot (1995), Moore & Sodroski(1996), Poignard (1996a), Cao (1997), Binley (1997a), Parren (1998a), Schonning (1998)]

- 9284: IIIB type-specific binding and neutralization –Skinner88
- 9284: Two fold increase in binding to gp120 in the presence of bound sCD4 –Sattentau91
- 9284: Single amino acid substitutions in the C4 region (427 W/V or W/S) or at the base of the V3 loop (298 R/G) can significantly increase binding and neutralization—position 427 is also important for CD4 binding and anti-CD4 binding site MAbs—Wyatt92
- 9284: Increased binding in the presence of sCD4 –Sattentau93
- 9284: Inhibits C4 region antibodies (G3-299, G3-519) which have conformational requirements –Moore93c
- 9284: Peptide RIQRGPGRAFVTIGKIGNMRQA Reacts with three human brain proteins of 35, 55, 110 kDa called NEA-9284

 —Trujillo93
- 9284: Does not bind MN gp120, just IIIB –VanCott94
- 9284: gp41 mutation that confers resistance to neutralization by anti-CD4 binding site antibodies does not reduce neutralizing efficiency of this V3 region MAb –Thali94
- 9284: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells from the brain and colon this MAb can inhibit gp120 binding to GalCer *in vitro* –Cook94
- 9284: Binding domain aa 301-310: TRKSIRIQRG mutations in the V3 loop from basic residues can destroy virus infectivity and syncytium formation: 306 R/T,309 R/T and 313 R/G can also reduce binding of V3 MAbs with two different binding sites: 9284 and 0.5β called NEA9284 –Okada94
- 9284: Did not neutralize infection of HIV/HTLV-I pseudotype –Sorensen94
- 9284: Binds equally well to monomer and oligomer, rapid association and potent neutralization of lab strains neutralizes cell-free virus Hx10 –Sattentau95a
- 9284: Used to monitor HIV-1 Env expression in infected H9 cells, binds native and reduced gp120s similarly –VanCott95
- 9284: Binds V3 loop anti-C1 MAbs 133/290 and 135/9 enhance binding reciprocal binding inhibition of other anti-V3 MAbs Moore96
- 9284: V3 MAbs 9284, BAT123, 110.5, and 110.I could each significantly increase gp120 dissociation from virus, mimicking sCD4, and expose the gp41 epitope for MAb 50-69, in contrast to anti-V2 MAbs –Poignard96b
- 9284: Virus with the V1-V2 loop deleted was viable and more susceptible to neutralization by CD4i MAb 17b, and anti-V3 MAbs 1121, 9284, and 110.4, but not to and CD4BS MAb F105 or sCD4 –Cao97
- 9284: The MAb and Fab binding to the oligomeric form of gp120 and neutralization were highly correlated authors suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the epitope –Parren98
- 9284: In a study of the influence of the glycan at position 306 of the V3 loop on MAb recognition, 9284 was found to have an inaccessible epitope on the oligomeric form of Env and anti-V3 MAbs were found to neutralize an HIV-BRU mutant virus that lacks the V3 loop glycan more efficiently than HIV-BRU –Schonning98

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
342 polyclonal	gp160(301–325)	gp120()	NNTRKSIRIQRGPGRAF- VTIGKIGN	L	oral immunization – peptide plus cholera toxin adjuvant	murine(IgA)				
	References: [Bukawa	(1995)]			J					
	•		mucosal immunization is able G30 component of the multico							
343 polyclonal	gp160(301–325)	gp120()	NNTRKSIRIQRGPGRAF- VTIGKIGN	L	DNA vaccine IIIB env + rev	murine(IgA22a)				
	References: [Sasaki (References: [Sasaki (1998)]								
	with DNA vaccir	• An anti- env response was sought, and co-expression of Rev was required – intramuscular versus nasal vaccination with DNA vaccine with a QS-21 adjuvant was studied – QS-21 enhanced the IgG_{2a} response mediated via Th1 cytokines $IFN\gamma$ and IL -2 –Sasaki98								
344 MAG 49	gp160(302–321)	gp120()	NTRKSIRIQRGPGRAFV- TIG	L	sCD4-(rHXB2 gp120)-complex	murine()				
	 References: [Kang (1994), Moore & Sodroski(1996)] MAG 49: Binds a V3 loop peptide – sensitive to both V3 loop mutations and a mutation at the base of the V1/V2 loop structure (120/121 VK/LE) –Kang94 MAG 49: Called #49 in this text. Binding enhanced by anti-C1 MAbs 133/290, 135/9, and by many anti-CD4 binding site MAbs – reciprocal enhancement of some anti-V2 MAbs – reciprocal binding inhibition of anti-V3 MAbs –Moore96 									
345 MAG 53	gp160(302–321)	gp120()	NTRKSIRIQRGPGRAFV- TIG	L	sCD4-(rHXB2 gp120)-complex	murine()				
	References: [Kang (1994)] • MAG 53: Binds a V3 loop peptide – sensitive to both V3 loop mutations and a mutation at the base of the V1/V2 loop structure (120/121 VK/LE) –Kang94									
346 MAG 56	gp160(302–321)	gp120()	NTRKSIRIQRGPGRAFV- TIG	L	sCD4-(rHXB2 gp120)-complex	murine()				
	• MAG 56: Binds	References: [Kang (1994)] • MAG 56: Binds a V3 loop peptide – sensitive to both V3 loop mutations and a mutation at the base of the V1/V2 loop structure (120/121 VK/LE) –Kang94								

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype)			
347 MAG 109	gp160(302–321)	gp120()	NTRKSIRIQRGPGRAFV- TIG	L	sCD4-(rHXB2 gp120)-complex	murine()			
	References: [Kang (1994)] • MAG 109: Binds a V3 loop peptide – sensitive to both V3 loop mutations and a mutation at the base of the V1/V2 loop structure (120/121 VK/LE) –Kang94								
348 1324-E	gp160(303-308)	Env()	TRTSVR	L	HIV-1 E clade infection	$\text{human}(\text{IgG}_1\kappa)$			
	 1324-E: A human MAb was derived from an HIV-1 E clade infection from a US service man who had served in Thailand, selected with the consensus V3 peptide from clade E – cross-reactive with V3 peptides, and gp120 from E, C and A clades, as well as cells infected with a C-clade primary isolate, but not with B and D clade V3 peptides or rgp120 – neutralizes E clade virus adapted for growth in H9 cells, but not 5 primary E clade isolates, including the autologous isolate – kinetic parameters were measured, 1324E was comparable to 447-52D –Gorny98 1324-E: E clade stimulated MAb did not cross-react with B clade peptides nor did B clade derived peptides with an E clade V3 loop, but both E and B clade stimulated Abs can cross-react with some peptides from other clades – this Ab showed strong binding to several E, A and F peptides, one C peptide, and no reactivity with B peptides and most D peptides –Zolla-Pazner99 1324-E: MAb reacted with peptides from E clade, while B clade derived MAbs could not –Zolla-Pazner99a 								
349 polyclonal	gp160(303–319) gp120() CKRKIHIGPGQAFYT Peptide-ISCOM murine(IgG _{2a} ,b) References: [Ahluwalia (1997)] • A V3 loop peptide modified to resemble an Indian form (GPGQ) was incorporated into ISCOMS (immune stimulating complexes) or liposomes, and used to immunize mice – the IgG _{2a} /IgG _{2b} antibody response was enhanced by the presentation in the ISCOM suggestive of a Th1 response, Ahluwalia97								
350 MO99/V3	gp160(304–308)	gp120()	RKSIR	no	rpB1 (IIIB Env	human(IgM)			
	286-467) References: [Ohlin (1992)] • MO99: Generated through <i>in vitro</i> "immunization" of uninfected-donor lymphocytes –Ohlin92								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
351 C311E	 51 C311E gp160(304–313) gp120() RKRIHIGP L IIIB infection chimpanze References: [Warrier (1996), Alsmadi & Tilley(1998)] C311E: Synergistic neutralization of HIV-1 when combined with anti-V2 MAb C108G –Warrier96 C311E: A study of 6 anti-Env MAbs and their ability to bind or direct ADCC against target cells infected with IIIB, MN, SF-2, and RF – C311E bound and directed lysis against all four strains –Alsmadi98 								
352 924	 gp160(304–314) gp120() RKSIRIQRGPG vaccinia-gp160 IIIB murine(IgG₁κ) References: [Chesebro & Wehrly(1988), Pincus (1991), Pincus & McClure(1993), Pincus (1993), Cook (1994), Pincus (1996), Pincus (1998)] 924: HIV IIIB strain specific –Chesebro88 924: Epitope sequence is based on database count of a specified location – 924-RAC immunotoxin is IIIB strain-specific –Pincus91 924: MAb was coupled to ricin A chain (RAC) – immunotoxin efficacy was not significantly decreased by sCD4, although the efficacy of gp41 MAb immunotoxins in vitro increased 30-fold by sCD4 –Pincus93 924: Ab response in IIIB lab workers was compared to gp160 LAI vaccine recipients – MAb 924 was used as a control – infected lab workers and a vaccinia gp160 vaccine had strong V3 MAb response, but alum absorbed rec gp160 did not generate anti-V3 response –Pincus93a 924: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells from the brain and colon – this MAb can inhibit gp120 binding to GalCer in vitro –Cook94 924: A panel of immunotoxins were generated by linking Env MAbs to ricin A – immunotoxins mediated cell killing, but killing was not directly proportional to binding –Pincus96 								
353 907	 gp160(304–314) gp120() RKSIRIQRGPG L vaccinia-gp160 IIIB murine(IgG₁κ) References: [Chesebro & Wehrly(1988), Pincus (1989), Pincus (1991), Pincus (1996)] 907: Strain specific binding, and neutralization of only the LAV strain –Chesebro88 907: Coupled to ricin A chain (RAC), MAb 907 inhibited protein synthesis and cell growth in HIV-infected cells –Pincus89 907: Epitope sequence is based on database count of a specified location – 924-RAC immunotoxin is IIIB strain-specific –Pincus91 907: A panel of immunotoxins were generated by linking Env MAbs to ricin A – immunotoxins mediated cell killing, but killing was not directly proportional to binding –Pincus96 								
354 polyclonal	gp160(304–318) References: [Chin (1	gp120() 995)] umoral immune response	RKSIRIQRGPGRA	AFV ype switching – human I	? gG MAbs were generat	human(IgG,IgM)			

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
355 polyclonal	gp160(304–318) References: [Anderss	, ,-	RKSIRIQRGPGRAFV primary and secondary peptic	la vaccinations was	Peptide	human(IgG,IgM)			
			s toxin helper epitope –Zafiro		studied – the minunoge				
356 polyclonal	gp160(304–320) References: [Spear (1	gp120() 994)]	RKRIHIGPGRAFYTT	L (MN ALA-1)	HIV-1 infection	human(unk)			
	 40% of antibody in serum that can bind to native viral proteins on MN-infected cells can be blocked by the peptide RKRIHIGPGRAFYTT, which can also block 75-95% of the complement activation on HIV infected cells –Spear94 								
357 10F10	gp160(304–320) References: [Duarte (gp120()	RKRIHIGPGRAFYTT	L	Peptide	$murine(IgG_1) \\$			
	 2C4: Putative epitope lies within IHIGPGRAFYT – generated by multi-epitope polypeptide immunization – recognize MN and SC (TRSIHIGPGRAFYTT) peptides, lower affinity for SF2 –Duarte94 								
358 2C4	gp160(304–320) References: [Duarte (gp120() [1994)]	RKRIHIGPGRAFYTT	L (MN)	Peptide	$murine(IgG_{2a})$			
	• 2C4: Putative epitope lies within IHIGPGRAFYT – neutralizes MN, not IIIB and SF2 – generated by multi- epitope polypeptide immunization – recognize MN and SC (TRSIHIGPGRAFYTT) peptides, lower affinity for SF2 – Duarte94								

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
359	412-D	gp160(304–320)	gp120()	RKRIHIGPGRAFYTT	L	HIV-1 infection	$\text{human}(\text{IgG}_1\kappa)$			
		Donor: Susan Zolla-Pazner (NYU Med. Center) Poforor acces [Correct (1002) Specif (1002) Van Cett (1004) Fontanet (1005) Correct (1008) Nivembi (1008) Zella Pazner								
		References: [Gorny (1993), Spear (1993), VanCott (1994), Fontenot (1995), Gorny (1998), Nyambi (1998), Zolla-Pazner (1999a), Zolla-Pazner (1999b)]								
		• 412-D: Neutralizes MN, does not bind SF2 or HXB2 – not reactive with hexa or heptapeptides by Pepscan –Gorny9								
		• 412-D: Mediated deposition of complement component C3 on HIV infected cells, enhanced by second Ab binding,								
		rabbit anti-human IgG –Spear93								
		• 412-D: Called 412-10D – relatively rapid dissociation and weak homologous neutralization –VanCott94								
		• 412-D: Called 412 – The tip of the V3 loop was presented in a mucin backbone – higher valency correlates with								
		stronger affinity constant –Fontenot95								
		• 412-D: Kinetic parameters were measured, and the association rates were similar, but dissociation rate constants were								
		quite variable for V3 MAbs, 412-D has a relatively fast dissociation, thus low affinity among V3 MAbs –Gorny98 • 412-D: Using a whole virion-ELISA method, 18 human MAbs were tested for their ability to bind to a panel of 9								
		• 412-D: Using a whole virion-ELISA method, 18 numan MAbs were tested for their ability to bind to a panel of 9 viruses from clades A, B, D, F, G, and H – 412-D was bound only to B clade virions and to D clade MAL –Nyambi98								
		• 412-D: Review of clade specificity and anti-V3 HIV-1-Abs –Zolla-Pazner99b								
		• 412-D: MAb peptide-reactivity pattern clustered with immunological related MAbs: 391.5, 412 and 418, all selected								
		with MN V3 peptide – the core amino acids HIGPGR tended to be critical for reactivity in this group –Zolla-Pazner99a								
360	CGP 47 439	gp160(304-322)	gp120()		L	IIIB gp120	BAT123-human Ig chimera()			
		References: [Liou (1	989), Safrit (1993), Guntl	nard (1994), Gauduin (1998)	, Jacobson(1998)]					
		• CGP 47 439: pas	sive transfer to Hu-PBS-S	CID mice confers protection	against challenge	with homologous cell-fre	e			
			human Ig chimera –Safrit							
			•	ing multidose tolerability, im		-				
		 GP 47 439 was well tolerated, serum t_1/2 was 8–16 days, and a virus burden reduction was noted in some patients Gunthard94 								
		• CGP 47 439: Post-exposure passive transfer of murine BAT123 can confer protection to hu-PBL-SCID mice chal-								
		lenged with HIV-1 LAI – this protection is not elicited by CGP 47 439, suggesting that the protection is mediated by								
		-	-	123 is lost when mice were to						
		vates serum complement – in this circumstance complement activation provided a protective advantage –Gauduin98								
		 CGP 47 439: Rev 	view of passive immunoth	erapy, summarizing –Guntha	rd94 in relation to	other studies –Jacobson98	8			

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
361 178.1	 References: [Thiriart 178.1: Reacts to g 178.1: Called 178 178.1: gp41 amin region 662–675 is 178.1: MAbs again from the brain an inhibited but did r 	o acid substitutions 668 ELDKWANLWNWFN inst the glycosphingolipi	oore & Ho(1993), Coo A EIA and immunoblo loes not bind well to do (N/S) and 675 (I/M) i I –Back93 id GalCer block HIV in in inhibit gp120 binding Ab binding—Cook94		3s neutralization poter eptible CD4 negative c	eells
362 257-D	References: [Gorny D'Souza (1994), Vano (1995), Wisnewski (1 (1998), Gorny (1998), • 257-D: Called 25' • 257-D: Reacts wit • 257-D: Neutralize • 257-D: Additive MRF –Cavacini93 • 257-D: Mediated rabbit anti-human • 257-D: Included a not IIIB –D'Souza • 257-D: Potent MM • 257-D: Called 25 primary isolates in • 257-D: In serotyp • 257-D: Only inhi incorporated diffe	Cott (1994), D'Souza (1996), Schutten (1996), Zolla-Pazner (1999a), Zolla-Pazner (1999a)), Karwowska (1992b) (1995), Zolla-Pazner (1995), Zolla-Pazner (1995), Start Zolla-Pazner (1997), Start Zolla-Pazner (1999b), Falizing MAb –D'Souzal SF2, does not cross-recyll – specificity: MN, In when combined with ent component C3 on Hillated virolysis of MN, ibody characterization essociation constant –Vize MN and closely relly involving 11 labs –E ometry, bound only to virus, and strong enhaldonor –Schutten95	eact with RF, WM52, or FSF2, NY5, RF. –Gorny93 CD4 binding site MAb FUV infected cells, enhance but not in the presence of and assay comparison – but not 194 ated JRCSF, but not 2 B	chutten (1995b), Fonter 7), LaCasse (1998), Y (1999)] HXB2 –Karwowska92a F105 – does not neutral fied by second Ab bind fisCD4 –Spear93 best NAb against MN, subtype and 1 D subt -Pazner95 //pe chimeric viruses,	enot a lize ing, but

MAb ID	HXB2 Location	Author's Location Sequence	Neutralizing Immunogen	Species(Isotype)
MAb ID 257-D cont.	 257-D: 257-D is V H5 – V-region heavy chain usage was examined and a bias of enhanced V H1 and V H4, and reduced V H3, was noted among HIV infected individuals –Wisnewski96 257-D: IIIB neutralizing MAbs <i>in vitro</i> fail to neutralize in a mouse model it <i>in vivo</i> –Schutten96 257-D: Neutralized (>90%) an SI-env chimeric virus and enhanced (>200%) an NSI-env chimeric virus –Schutten97 257-D: Binds less extensively than MAb 391-95D on the surface of HIV-1 isolates SF162 and SF128A – neutralizes less potently than 391-95D – stronger neutralization of primary macrophage targets than PBMC –Stamatatos97 257-D: Called 257 – gp120 can inhibit MIP-1α from binding to CCR5, but this inhibitory effect is blocked by pre-incubation of gp120 with three anti-V3 MAbs: 447, 257, 1027 – MAb 670 which binds in the C5 region had no effect –Hill97 			
	 257-D: A T-cell line-adapted (TCLA) derivative of SI primary isolate 168P acquired the ability to be neutralized by anti-V3 MAbs – the primary isolate could use either CCR5 or CXCR4, and was not neutralized when infection was directed via either pathway, however the TCLA derivative uses CXCR4 only and is neutralized –LaCasse98 257-D: A neutralization assay was developed based on hemi-nested PCR amplification of the LTR (HNPCR) – LTR-HNPCR consistently revealed HIV DNA and was shown to be a rapid, specific and reliable neutralization assay based on tests with 6 MAbs and 5 isolates –Yang98 257-D: Kinetic parameters were measured, and the association rates were similar, but dissociation rate constants were 			
	 quite variable for V3 MAbs, 257-D has a slow dissociation, thus the highest affinity among V3 MAbs –Gorny98 257-D: Review of clade specificity and anti-V3 HIV-1-Abs –Zolla-Pazner99b 257-D: MAb peptide reactivity pattern clustered with immunological related MAbs: 1108, 386, 268, 311, 257, 694.8 – the amino acids HI tended to be critical for reactivity in this group –Zolla-Pazner99a 257-D: rgp120 derived from a R5X4 subtype B virus, HIV-1 W61D, was used to vaccinate healthy volunteers and the resulting sera were compared with sera from HIV-1 positive subjects and neutralizing MAbs – 257-D bound rgp120 W61D but could only neutralize the W61D isolate following T-cell line adaptation –Beddows99 257-D: Study of a live-vector mucosal vaccine that expresses HIV-1 V3 domains using the bacterium Streptococcus 			

gordonii which can express heterologous Ag and can colonize the oral cavity and vagina of mice -268-D and 257-D recognized S. gordonii expressing the V3 domain of MN - the vaccine stimulated V3-specific IgG_{2a} in mice

257-D: UK Medical Research Council AIDS reagent: ARP3023
257-D: NIH AIDS Research and Reference Reagent Program: 1510

-Oggioni99

MAb ID	HXB2 Location	Author's Locatio	n Sequence	Neutralizing	Immunogen	Species(Isotype)			
363 41148D	41148D: Neutrali41148D: A study		117C, reacts with MN, I their ability to bind or	direct ADCC against targe					
	MN, SF-2, and RF – bound and directed lysis against strains IIIB, MN, SF-2, comparable to 4117C, however 41148D is 10x less efficient at neutralization, showing ADCC and neutralization don't always correlate –Alsmadi98								
364 311-11-D	 gp160(305–313) gp120() KRIHIGP L HIV-1 infection human(IgG₁λ) Donor: Susan Zolla-Pazner (NYU Med. Center) References: [Gorny (1991), Gorny (1993), Spear (1993), Gorny (1998), Zolla-Pazner (1999a), Zolla-Pazner (1999b)] 311-11-D: Neutralizes MN – binds SF2: KSIYIGP –Gorny93 311-11-D: Mediated deposition of complement component C3 on HIV infected cells, enhanced by second Ab binding, rabbit anti-human IgG –Spear93 311-11-D: Review of clade specificity and anti-V3 HIV-1-Abs –Zolla-Pazner99b 311-11-D: MAb peptide reactivity pattern clustered with immunological related MAbs: 1108, 386, 268, 311, 257, 694.8 – the amino acids HI tended to be critical for reactivity in this group –Zolla-Pazner99a 								
365 391/95-D	References: [Gorny (Zolla-Pazner (1999b)] 391/95-D: Neutra 391/95-D: Composite had higher 391/95-D: Called SF128A – neutral – binding post-gp 391/95-D: Review 391/95-D: Called	dizes MN – binds to SF etition ELISAs with ser- er affinity than cyclic –S 391-95D – binds more izes more potently than 120-sCD4 association in v of clade specificity an 391.5 – MAb peptide- ted with MN V3 peptid	2, not IIIB –Gorny93 ial deletions estimated to deligman96 extensively than MAb 257-D – stronger neutrons related to anti-V3 Abd anti-V3 HIV-1-Abs – reactivity pattern clusters	the epitope to be KRIHIGI 257-D on the surface of lalization of primary macros neutralizing capacity –S	PGRAFY – unconstra HIV-1 isolates SF162 ophage targets than PE tamatatos97 related MAbs: 391.5,	and BMC			

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype)
866 Aw	gp160(305–320) References: [McKnig	gp120() ght (1995)]	KSITIGPGRAFHAI	L	V3 peptide	rat()
		_	3 peptides that represent either neutralization of both wt and	• •		variant
67 Bw	gp160(305–320) References: [McKnig	gp120() ght (1995)]	KSITIGPGRAFHAI	L	V3 peptide	rat()
		_	3 peptides that represent either neutralization of only the wt	• •		
68 Dv	gp160(305–320) References: [McKnig	gp120()	KSITIGSGRAFHAI	L	V3 peptide	rat()
	• Dv: Rat antibodie	es were raised against V3	3 peptides that represent either of only the variant strain, does	• •		variant
69 Fv	gp160(305–320) References: [McKnig	gp120() ght (1995)]	KSITIGSGRAFHAI	L	V3 peptide	rat()
			B peptides that represent either of only the variant strain, does			variant
70 Gv	gp160(305–320) References: [McKnig	gp120()	KSITIGSGRAFHAI	L	V3 peptide	rat()
	• Gv: Rat antibodie	es were raised against V3	3 peptides that represent either of only the variant strain, does			variant
71 Hv	gp160(305–320) References: [McKnig	gp120()	KSITIGSGRAFHAI	L	V3 peptide	rat()
	Hv: Rat antibodie	es were raised against V3	B peptides that represent either of only the variant strain, does			variant

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
372 DO142-10	gp160(305-320)	gp120()	KRIHIGPGRAFYTT	L	HIV-1 infection	human Fab(IgG ₁)				
	References: [Seligman (1996), Ditzel (1997), Parren (1997b), Parren & Burton(1997), Parren (1998a), Sullivan (1998a)]									
		 DO142-10: Fab fragment – competition ELISAs with serial deletions defined the epitope KRIHIGPGRAFYTT –Seligman96 								
	• DO142-10: Phage expression libraries panned against MN peptide were used to select Fab DO142-10 – Fab binds									
	MN gp120, but not a primary isolate rec gp120 –Ditzel97									
	• DO142-10: Neutralizes TCLA strains but not primary isolates –Parren97									
	• DO142-10: Binds to gp120 MN and an MN V3 peptide with equal affinity, but binds a consensus B peptide and									
	JRCSF less well, and to IIIB gp120 not at all –Parren97c									
	• DO142-10: The rank order of FAb binding affinity to monomeric gp120 (Loop 2 > 3B3 > b12 = DO8i > b11 > b3 >									
	b14 > b13 > DO	b14 > b13 > DO142-10 > DA48 > L17) was markedly different that FAb binding affinity to the mature oligomeric								
	form $(3B3 > b12)$	form $(3B3 > b12 > DO142-10 > Loop 2 > b11 > L17 > b6 > DO8i > b14 > DA48 > b3 > b13)$ and binding to								
	oligomeric form a	oligomeric form and neutralization were correlated for both Fabs and MAbs – authors suggest that neutralization is								
	determined by the	determined by the fraction of Ab sites occupied on a virion irrespective of the epitope –Parren98								
	• DO124-10: The	HIV-1 virus YU2 entry	can be enhanced by MAbs	binding to the CD	4BS, V3 loop, and C	CD4i				
	epitopes – the acti	ivation for this enhanced	entry state could be conferre	ed on HxB2 by intro	oducing the YU2 V3 1	oop,				
	or the YU2 V3 ar	nd V1/V2 loops – a simil	ar effect is observed by sub-	-neutralizing conce	ntrations of sCD4 and	d the				
	effect is dependen	effect is dependent of CCR5 - FAb Ab fragment DO124-10 also enhances YU2 entry, ruling out Fc interactions								
	or Env cross-linking as a mechanism - while DO124-10 enhances YU2 entry 6-fold, it neutralizes HXBc2 under									
	identical condition	ns –Sullivan98b								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
373 50.1	gp160(306-310)	gp120()	RIHIG	L	V3 MN peptide	murine($\operatorname{IgG}_1 \kappa$)				
	Donor: Mary White-S	Donor: Mary White-Scharf, Repligen Corporation, Cambridge, MA								
	References: [D'Souza (1991), White-Scharf (1993), Potts (1993), Ghiara (1993), Rini (1993), Bou-Habib (1994),									
	VanCott (1994), Robert-Guroff (1994), Moore (1994b), VanCott (1995), Fontenot (1995), Seligman (1996), Berman									
	(1997), LaCasse (1998), Stanfield (1999)]									
	• 50.1: Called R/V3-50.1 – potent neutralizing of lab strains–DSouza91									
	• 50.1: Epitope de –WhiteScharf93									
	 50.1: No synergistic neutralization of MN when combined with CD4BS MAb F105 – isotype stated to be IgG 2a –Potts93 									
	• 50.1: Crystal structure of a 24 amino acid peptide from the V3 loop bound to 59.1 and 50.1 Fab fragments – epitope									
	KRIHIGP –Ghiara93									
	• 50.1: Crystal structure of V3 loop bound to 50.1 – light chain binds just to the left of GPG, heavy chain binds further									
	to the left –Rini93									
	• 50.1: No neutralization of primary isolate JR-CSF – greater affinity for and neutralization of T cell tropic strain									
	T-CSF, derived from JR-CSF –Bou-Habib94									
	• 50.1: Potent MN neutralization, slow dissociation rate –VanCott94									
	• 50.1: Chimeric MN V3 loop in an HXB2 background allows increased FACS signal, Ab affinity, and viral neutralization –Robert-Guroff94									
	• 50.1: Shows mod	• 50.1: Shows modest cross-reactivity among B clade gp120s, little outside B clade –Moore94b								
	• 50.1: Used to mo	nitor HIV-1 Env expressi	on in infected H9 cell	s –VanCott95						
	• 50.1: Competition ELISAs with serial deletions produced comparable estimate of epitope length to crystal structure									
	and alanine substi	itution – KRIHIGP –Seli	gman96							
	• 50.1: Binds to 6/7	7 isolates from breakthro	ugh cases from a MN	gp120 vaccine trial –Berm	nan97					
	• 50.1: A T-cell lin	e-adapted (TCLA) deriv	ative of SI primary iso	plate 168P acquired the ab	oility to be neutralized	l by				
	anti-V3 MAbs – t	anti-V3 MAbs – the primary isolate could use either CCR5 or CXCR4, and was not neutralized when infection was								
	directed via either	directed via either pathway, however the TCLA derivative uses CXCR4 only and is neutralized –LaCasse98								
	• 50.1: The crystal structure of V3 loop peptides bound to Fabs was obtained – conformational changes in the tip of									
	the V3 loop (GPC	the V3 loop (GPGR) were observed when different Fabs were bound –Stanfield99								
	• 50.1: NIH AIDS	Research and Reference	Reagent Program: 128	39						

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
374 BAT123	gp160(306–322)	gp120()	RIRIQRGPGRAFVTIC	GK L	Inact IIIB	$murine(IgG_1\kappa)$				
	Donor: Tanox Biosystems Inc and David Ho, ADARC, NY References: [Fung (1987), Liou (1989), Fung (1990), Moore & Ho(1993), Safrit (1993), Thali (1993), Pirofski (1993),									
	Gauduin (1995), Sattentau & Moore(1995), Poignard (1996a), Andrus (1998), Parren (1998a), Gauduin (1998)]									
	BAT123: CGP 47 439 is a BAT123 chimera that has a human IgG 1 Fc domain									
	BAT123: Anti-idiotypic MAb, AB19-4i, stimulates anti-anti-ID which neutralizes MN and IIIB –Fung90									
	• BAT123: Called BAT-123 – conformational, does not bind well to denatured gp120 – not reactive with SF-2 gp120									
	- does not inhibit HIV-1 sera from binding to IIIB gp120 –Moore93a									
		• BAT123: Passive transfer to Hu-PBS-SCID mice confers protection against challenge with homologous cell-free								
	 BAT123: Variable region sequenced – heavy chain: V 3660-SB32, D unknown, J H3 – light chain: V kappa21, J kappa2 –Pirofski93 									
	• BAT123: Passive transfer of BAT123 to hu-PBL-SCID mice 1 hour prior to inoculation with HIV-1 LAI, or up to									
	four hours post-exposure, could protect mice from infection – the protection, like the MAb, was specific for the viral strain LAI –Gauduin95									
	BAT123: Binds with high affinity to monomer and oligomer, rapid association and potent neutralization of lab strain —Sattentau95a									
	• BAT123: Epitope described as RGPGRAFVTIGK – V3 MAbs 9284, BAT123, 110.5, and 110.I could each signif-									
	icantly increase gp120 dissociation from virus (BAT123 less so than the others), mimicking sCD4, and expose the gp41 epitope for MAb 50-69, in contrast to anti-V2 MAbs –Poignard96b									
	 BAT123: Post-exposure prophylaxis was effective when MAb 694/98-D was delivered 15 min post-exposure to HIV- 									
	1 LAI in hu-PBL-SCID mice, but declined to 50% if delivered 60 min post-exposure, and similar time constraints									
		have been observed for HIVIG, 2F5 and 2G12, in contrast to MAb BAT123 that could protect delivered 4 hours post								
	• BAT123: The M	Ab and Fab binding to th	ne oligomeric form of gp12	20 and neutralization	were highly correlated	- L				
		nat neutralization is deter	mined by the fraction of A							
			f murine BAT123 can confe	er protection to hu-PI	BL-SCID mice challeng	ged				
	with HIV-1 LAI – this protection is not elicited by CGP 47 439, a BAT123 chimera that has a human IgG 1 Fc domain, suggesting that the protection is mediated by complement – the protective ability of BAT123 is lost when mice were									
	treated with cobra	-	ctivates serum complemen	•						

MAb ID	HXB2 Location	Author's Loca	ntion Sequence	Neutralizing	Immunogen	Species(Isotype)				
375 838-D	gp160(307–311) Donor: Susan Zolla-l	Env() Pazner (NYU Med. (KSITK Center)	L	HIV-1 infection	$\text{human}(IgG_1\lambda)$				
	References: [Gorny (1997), Nyambi (1998), Zolla-Pazner (1999a), Zolla-Pazner (1999b)] • 838-D: Five human MAbs against were derived from HIV-infected North American subjects after selection by the V3 RF peptide – 838-D was cross-reactive with V3 peptides from clade A and C, and could bind to 5/8 B clade V3									
	peptides – 50% n	eutralization of RF v	was obtained – Gorny97							
	• 838-D: Using a whole virion-ELISA method, 18 human MAbs were tested for their ability to bind to a panel of 9 viruses from clades A, B, D, F, G, and H – 838-D bound B clade virions but had limited cross-reactivity with other clades, with low levels of binding to A and D virions – Nyambi98									
	 838-D: Review of clade specificity and anti-V3 HIV-1-Abs – this Ab showed strong binding to many A, B, C and F peptides, poor binding to D and E –Zolla-Pazner99b 									
	• 838-D: MAb peptide-reactivity pattern clustered with immunological related MAbs: 838, 782, 1027, 908, and 1006, all selected with RF V3 peptide – the core amino acids KSITK tended to be critical for reactivity in this group –Zolla-Pazner99a									
376 782-D	gp160(307-312)	Env()	KSITKG	L	HIV-1 infection	$\text{human}(IgG_1\lambda)$				
		Donor: Susan Zolla-Pazner (NYU Med. Center)								
	 References: [Gorny (1997), Zolla-Pazner (1999a), Zolla-Pazner (1999b)] 782-D: Five human MAbs against were derived from HIV-infected North American subjects after selection by the V3 RF peptide – 782-D was not cross-reactive with V3 peptides from clade A or E, but could bind to 3/8 B clade V3 peptides, and 1/2 C clade V3 peptides – 50% neutralization of RF was obtained – Gorny97 782-D: Review of clade specificity and anti-V3 HIV-1-Abs – this Ab showed strong binding to several B and F peptides, one C peptide, and some reactivity with A and D peptides –Zolla-Pazner99b 782-D: MAb peptide-reactivity pattern clustered with immunological related MAbs: 838, 782, 1027, 908, and 1006, all selected with RF V3 peptide – the core amino acids KSITK tended to be critical for reactivity in this group –Zolla-Pazner99a 									

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)		
377 1006-15D	References: [Gorny (1006-15D: Five I the V3 RF peptid but not E clade — 1006-15D: Revie F peptides, one C —Zolla-Pazner99I 1006-15D: MAb	le – was somewhat cross-r Gorny97 ew of clade specificity and C peptide, and some react b peptide-reactivity pattern I with RF V3 peptide – the	19a), Zolla-Pazner (1) re derived from HIV- reactive with V3 pept d anti-V3 HIV-1-Ab trivity with A peptide of clustered with imm	no 999b)] infected North American s ides from clade A, C and c s – this Ab showed strong s – no binding was observ unological related MAbs: SITK tended to be critical	binding to several B ed with D and E pepting 838, 782, 1027, 908,	des, and ides and		
378 908-D	gp160(307–312) gp120() KSITKG L HIV-1 infection human(IgG₁λ) Donor: Susan Zolla-Pazner (NYU Med. Center) References: [Gorny (1997), Zolla-Pazner (1999a), Zolla-Pazner (1999b)] • 908-D: Five human MAbs against were derived from HIV-infected North American subjects after selection by the V3 RF peptide − 908-D was not cross-reactive with V3 peptides from clade E, but could bind to 6/8 B clade V3 peptides, 2/4 A clade, and 1/2 C clade − 50% neutralization of RF was obtained −Gorny97 • 908-D: Review of clade specificity and anti-V3 HIV-1-Abs − this Ab showed strong binding to several A, B, C and F peptides, and poor binding to E and D peptides −Zolla-Pazner99b • 908-D: MAb peptide-reactivity pattern clustered with immunological related MAbs: 838, 782, 1027, 908, and 1006, all selected with RF V3 peptide − the core amino acids KSITK tended to be critical for reactivity in this group −Zolla-Pazner99a							
379 1027-15D	References: [Gorny (• 1027-15D: Five I the V3 RF peptide clade V3 peptide: • 1027-15D: Revie F peptides, one C • 1027-15D: MAb	de – 1027-15D was not cress, and 1/2 C clade V3 pepers of clade specificity and E peptide, and was not react peptide-reactivity pattern I with RF V3 peptide – the	19a), Zolla-Pazner (1) re derived from HIV-coss-reactive with V3 otides –Gorny97 lanti-V3 HIV-1-Abs ctivity with A, D and clustered with imm	no 299b)] infected North American s peptides from clade A or this Ab showed moderat E peptides –Zolla-Pazner unological related MAbs: SITK tended to be critical	E, but could bind to 3/e binding to several B 99b 838, 782, 1027, 908,	8 B and and		

	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
380 F19.48-3	gp160(307–319) gp120() IRIQRGPGRAFVT L IIIB rgp120 294- murine(IgG-								
	References: [Boudet (1994)] • F19.48-3: Strain specific – used to raise anti-idiotype antibodies –Boudet94								
381 F19.26-4	gp160(307-319)	gp120()	IRIQRGPGRAFVT	L	IIIB rgp120 294-	$murine(IgG_{2a}\kappa)$			
	References: [Boudet (1994)] • F19.26-4: Strain specific – used to raise anti-idiotype antibodies –Boudet94								
382 F19.57-11	gp160(307-319)	gp120() (1991), Boudet (1994), I	IRIQRGPGRAFVT	L (LAI)	IIIB rgp120 294- 474	$\text{murine}(\text{IgG}_1\kappa)$			
383 M77	than the original l –Boudet95	F19.57-11 (Ab3 could als	(Ab3) were raised in BALB/o recognize 1282 and SF2, with	th aa TRK(R or S)	YIGPGRA(WY or FH	()T)			
383 M77									

]	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)	
384 \$	SP.BAL114		nat during <i>in vivo</i> immun	SIHIGPGRAF oselection of escape viru	L s, the V3 domain gain	?	murine?($\operatorname{IgG}_{2a}\kappa$)	
385	SP.SF2:104	gp160(308–317)	gp120()	SIYIGPGRAF	L	HIV-1 infection	$(\operatorname{IgG}_{2a}\kappa)$	
		 References: [Arendrup (1993), Arendrup (1995)] SP.SF2:104: Anti-V3 antibody that could neutralize primary virus isolated from a time point of neutralization resistance of autologous virus –Arendrup93 SP.SF2:104: Authors suggest that during <i>in vivo</i> immunoselection of escape virus, the V3 domain gains increasing resemblance to lab strains –Arendrup95 						
386 1	polyclonal	-	gp120() jk (1995)] om six individuals tested for immunological escape				human(IgG,IgM)	

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)					
387 19b	gp160(308-320)	gp120()	-IGFY-T	L	HIV-1 infection	$human(IgG_1)$					
	Donor: James Robins	Donor: James Robinson, University of Connecticut, Storrs									
	References: [Scott Jr	References: [Scott Jr (1990), Moore (1994b), Moore (1994a), Sattentau(1995), Moore (1995b), Moore (1995a), Moore									
	& Ho(1995), Gauduin	& Ho(1995), Gauduin (1996), Wu (1996), Trkola (1996a), D'Souza (1997), Binley (1997a), Fouts (1997), Ugolini (1997),									
	Boots (1997), Parren (Boots (1997), Parren (1997b), Mondor (1998), Parren (1998a), Trkola (1998), Binley (1999)]									
	• 19b: V3 loop bin	• 19b: V3 loop binding MAb that is more broadly clade cross-reactive than most (binds to 19/29 clade B and 10/12									
	clade E gp120s) -	clade E gp120s) –Moore94b									
	61	studies with human sera	from seroconverting in	dividuals showed that an	ti-CD4 BS antibodies	can					
	•	n infection, comparable or	•								

while maintaining epitope integrity –Sattentau95

• 19b: Binds to some gp120s from clades A,B,C,E, and F – weakly neutralized some B and one C clade virus –Moore95a

• 19b: Formalin inactivation of virus at 0.1% formalin for 10 hours at 4 degrees was optimal for inactivation of virus

- 19b: Despite broad gp120 binding reactivity, not broadly neutralizing –Moore95b
- 19b: Review: more broadly cross-reactive than anti-V3 tip MAb 447-D –Moore95c
- 19b: Not as effective as IgG₁b12 at neutralization *ex vivo* of virus direct from plasma of HIV-1 infected individuals –Gauduin96
- 19b: MIP-1 α binding to CCR-5 expressing cells can be inhibited by gp120-sCD4 binding of 19b blocks this inhibition –Wu96
- 19b: Inhibits gp120 interaction with CCR-5 in a MIP-1β-CCR-5 competition study –Trkola96b
- 19b: In a multilaboratory blinded study, failed to consistently neutralize any of nine B clade primary isolates there were four sequences with variations in the defined epitope among the 9 isolates tested –D'Souza97
- 19b: Study shows neutralization is not predicted by MAb binding to JRFL monomeric gp120, but is associated with oligomeric Env binding 19b bound monomer, did not bind oligomer or neutralize JRFL –Fouts97
- 19b: Viral binding inhibition by 19b was weakly correlated with neutralization (all other neutralizing MAbs tested showed some correlation except 2F5) Ugolini97
- 19b: Abs that recognize discontinuous epitopes can identify mimotopes from a phage peptide display library 19b has an epitope involving the tip of the V3 loop, with 5 or 6 essential amino acids distributed within a 12 amino acid stretch the previously determined binding site was confirmed I – G FY T and some tolerated variants described, the I can be I,V, or L, the Y can be Y, F, or W probably a β-turn is required for FY or FF binding, but WY in can bind with out the context of the turn –Boots97

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
19b cont.										
		• 19b: Neutralizes	TCLA strains but not pri	mary isolates	–Parren97					
		• 19b: Used as a –Mondor98	control in this Hx10 bit	nding and neu	tralizing MAb study because	19b does not bin	d to Hx10			
		• 19b: The MAb a	nd Fab binding to the olig	gomeric form o	of gp120 and neutralization were	e highly correlated	d – authors			
		suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the epitope —Parren98								
			 19b: No detectable neutralizing activity among primary isolates with different co-receptor usage – some neutralization of TCLA strains –Trkola98 							
		• 19b: The MAbs	with the broadest neutral	izing activity, I	IgG_1b12 , $2G12$ and $2F5$, all have	e high affinity for	the native			
		trimer, indicating	g that they were raised i	n an immune	response to the oligomer on th	e virion surface	rather than			
		dissociated subur	nits – a disulfide linked g	p120-gp41 (S0	OS gp140) was created to mimic	c the native confo	rmation of			
		Env and explore i	its potential as an immun	ogen – SOS gp	140 is recognized by NAbs IgG	1b12, 2G12, and 0	CD4-IgG2,			
		and also by anti-	V3 MAbs 19b and 83.1	- SOSgp140	is not recognized by C4 region	n MAbs that neut	ralize only			
		TCLA strains, G	3-42 and G3-519; nor did	d it bind C11, 2	23A, and M90, MAbs that bind	to gp120 C1 and	C5, where			
		it interacts with g	gp41 – MAbs that bind C	D4 inducible	epitopes, 17b and A32 were ve-	ry strongly induce	ed by CD4			
		in SOS gp140 – a	anti-gp41 MAbs that bin	d in the region	that interacts with gp120, 7B2,	, 2.2B, T4, T15G	1 and 4D4,			
		did not bind to S	OSgp140, in contrast to	2F5, which bi	nds to the only gp41 epitope th	nat is well expose	d in native			
		gp120-gp41 com	plexes –Binley00							

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype)				
388 G3-523	• G3-523: The sulfa	gp120() nita (1988), Jagodzinski nted polysaccharide curd ibits G3-523 binding –J	lan sulfate (CRDS) binds to the	he Envelope of T-tro	? pic viruses and neutral	murine()				
389 4G10	gp160(308-322)	gp120()	RIQRGPGRAFVTGK		V3-loop HBcAg hybrid	murine()				
	References: [von Bru • 4G10: A 25 amin	 Donor: Dr. Albrecht von Brunn, Max-von-Pettenkofer-Institut, Ludwig-Maximilians-Universität München, Germany References: [von Brunn (1993)] 4G10: A 25 amino acid V3-loop sequence fused to HBcAg enhanced V3 immunogenicity –vonBrunn93 4G10: NIH AIDS Research and Reference Reagent Program: 2534 								
390 5F7	gp160(308-322)	gp120()	RIQRGPGRAFVTGK		V3-loop HBcAg hybrid	murine()				
	References: [von Bru • 5F7: A 25 amino	 Donor: Dr. Albrecht von Brunn, Max-von-Pettenkofer-Institut, Ludwig-Maximilians-Universitat Munchen, Germany References: [von Brunn (1993)] 5F7: A 25 amino acid V3-loop sequence fused to HBcAg enhanced V3 immunogenicity –vonBrunn93 5F7: NIH AIDS Research and Reference Reagent Program: 2533 								
391 MN215	generated by EBV	m epitope for MAB us	RIHIGPGRAFYTTKN ing the Dutch consensus is MC – displayed higher affinichutten95a							
392 Nea 9301	gp160(308–323) Donor: Dupont, commander Com		RIQRGPGRAFVTIGKI			murine()				
393 4117C	Tilley(1998)] • 4117C: Potent net • 4117C: Neutraliz Pinter93, Tilley92 • 4117C: Binds V3 • 4117C: A study of	utralizing activity agains es SF2 and MN syner loop – does not immunop f 6 anti-Env MAbs and	IXIGPGR di Marzo Veronese (1993), st MN, SF-2, and NY-5 – syn rgistically combined with a precipitate soluble gp120, doe their ability to bind or direct ysis against MN and SF2, bu	nergy with CD4BS M nti-CD4 binding si es react with gp120 o ADCC against targe	MAb 1125H –Tilley91 te discontinuous MA n intact virions –Pinter et cells infected with I	a ab – r93a				

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
394 453-D	References: [Gorny (1 453-D: Neutralize 453-D: Moderate 453-D: Called 45 higher valency of 453-D: Review of 453-D: MAb pep 537 – the core am	s MN – binds SF2: IYIG homologous neutralizations, epitope described as Korrelates with stronger and clade specificity and antitide-reactivity pattern cluino acids GP tended to be ical to 453 (HIGPGR), which was a support of the stronger of the stronger and the	Cott (1994), Fontenot PGR – specificity: I on, moderately slow IRIHIGPGR – the ti- finity constant –Fon i-V3 HIV-1-Abs –Zo stered with immuno critical for reactivity		y93 94 ented in a mucin backb 44, 419, 504, 447, 453 with a previously defi	one and ned
395 504-D	 References: [Gorny (504-D - Neutraliz 504-D: Review of 504-D: MAb pept 		9a), Zolla-Pazner (19 GPGR –Gorny93 i-V3 HIV-1-Abs –Zo stered with immuno	, -		human($\operatorname{IgG}_1\kappa$) and
396 419-D	References: [Karwow Zolla-Pazner (1999b)] • 419-D: MN, NY5 • 419-D: Neutralize • 419-D: Mediated rabbit anti-human • 419-D: Using a w viruses from clade • 419-D: Review of • 419-D: MAb pept	and SF2 strain specific, or MN – binds SF2: IYIG deposition of complement IgG –Spear93 whole virion-ELISA methes A, B, D, F, G, and H – clade specificity and antide-reactivity pattern clusters.	does not cross-react PGR –Gorny93 tt component C3 on od, 18 human MAb 419-D bound to 3/4 i-V3 HIV-1-Abs – epstered with immuno	L attenot (1995), Nyambi (1995), Nyambi (1995), Nyambi (1995), With RF, CDC4, WM52 or HIV infected cells, enhances were tested for their abil B clade virions, and to D contope is described as KRII ogical related MAbs: 133 y in this group –Zolla-Paz	HXB2 –Karwowska9 eed by second Ab bind ity to bind to a panel of clade MAL –Nyambi9 HIGP –Zolla-Pazner99 4, 419, 504, 447, 453	2a ing, of 9 8

MAb ID	HXB2 Location	Author's Locatio	n Sequence	Neutralizing	Immunogen	Species(Isotype)
397 83.1	References: [White-S 83.1: Neutralizes 83.1: Study of sy 83.1, and 58.2 – binding of the sec 83.1: Maternally response to rgp12 83.1: 19 day old n decreasing the tot sites and shift the 83.1: The MAbs trimer, indicating dissociated subun Env and explore it and also by anti- TCLA strains, G3 it interacts with g in SOS gp140 – a	scharf (1993), Potts (19 SF2 – WhiteScharf93 nergism of neutralization synergy was observed, ond (e. g. V3 loop MA transferred anti-V3 loo 0 SF2 in 21 day old BA nice injected with 83.1 h al IgG anti-gp120 resp immune response to value with the broadest neutral that they were raised its – a disulfide linked its potential as an immunity 3 MAbs 19b and 83. 3-42 and G3-519; nor dip41 – MAbs that bind nti-gp41 MAbs that bind DSgp140, in contrast to	on and binding compart, and the data suggest (abs) due to conformation op MAb selectively in ALB/c mice –Jelonek96 ave a shift in IgG ₁ responses, suggesting that praccination –Keller99 alizing activity, IgG ₁ b12 in an immune response gp120-gp41 (SOS gp14 nogen – SOS gp140 is reful to the suggestion of the suggesti	ller & Arora(1999), Binle ing F105 and sCD4 with that binding of one ligand nal changes –Potts93 hibits the anti-V3 loop A	the V3 MAbs: 50.1, 59.1 (F105) can increase the beauty component of the Igupon vaccination, without can mask immunogen thigh affinity for the nativition surface rather that he native conformation 12, 2G12, and CD4-IgG MAbs that neutralize on gp120 C1 and C5, whe strongly induced by CE 2B, T4, T15G1 and 4D	murine(IgG ₁) 1, he G ut ic ve an of 2, ly re 04 4,
398 5023B	gp160(309–316) References: [Langed: • 5023B: Generation	•	IQRGPGra murine MAbs –Langed	no ijk91	15 mer synthetic BH10 V3 peptide	murine(IgG)
399 F58/D1	 F58/D1: Binding outside the loop here. F58/D1: The interest was studied by elements. F58/D1: A 17 am of MAb – F58 new. 	to native gp120 1–3 fold ave little effect –Moore eraction of a 17-amino- ectrospray ionization m ino acid MicroAB was attralized 5x's more effici	d greater than to denature e93c acid neutralizing micro ass spectrometry –Mill made from the third con ciently in terms of mass	L fillar (1998), Jackson (199ed – 314G/W substitution a pantibody (MicroAB) base par98 plementarity-determining than the original MAb, 32 and events in early infection	bolishes binding, changed on F58 and HIV-1 er region of the heavy cha fold less on a molar bas	nv

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)	
400 P1/D12	gp160(309–316)	gp120()	IXXGPGRA	L	virus derived IIIB gp120	murine(IgG)	
	• P1/D12: Binding	om (1990), Moore (1993 to native gp1201–3 fold ave little effect –Moore	greater than to denatured	-314G/W substitution a		ges	
401 P4/D10	gp160(309–316)	gp120()	IXXGPGRA	L	virus derived IIIB gp120	murine($\operatorname{IgG}_1\kappa$)	
	 References: [Akerblom (1990), Broliden (1990), Broliden (1991), Marks (1992), Moore (1993b), Arendrup (1993), Hinkula (1994), Jacobson(1998), Schonning (1998)] P4/D10: Neutralizing and ADCC activity –Broliden90 P4/D10: Variable domain sequenced and is identical to F58/H3 –Marks91 P4/D10: Binding to native gp120 3 fold greater than to denatured – 314G/W substitution abolishes binding, changes outside the loop have little effect –Moore93c P4/D10: Primary isolates from different time points from one individual were not susceptible to neutralization by P4/D10 –Arendrup93 P4/D10: Used for passive immunotherapy in four late-stage HIV-infected patients – the serum level of p24 did not decrease in any of these four – see also MAb F58/H3 –Hinkula94 P4/D10: Review of passive immunotherapy, summarizing –Hinkula94 in relation to other studies –Jacobson98 P4/D10: Called P4D10 – In a study of the influence of the glycan at position 306 of the V3 loop on MAb recognition, anti-V3 MAbs were found to neutralize an HIV-BRU mutant virus that lacks the V3 loop glycan more efficiently than HIV-BRU – Ab binding site was suggested to be 314–323 of BRU –Schonning98 						
02 IIIB-34 V3	IIIB-34 V3: NeutIIIB-34 V3: Cal SDS-DTT, enhan	led IIIB-V3-34 – IIIB s	IQRGPGRAF QXGPG are critical aministrain specific neutralizate native and denatured good AIDS reagent: ARP3	tion – binding is reduc gp120 –Laman93	-		

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
403 IIIB-13 V3	 IIIB-13 V3: Also IIIB-13 V3: Neur IIIB-13 V3: Incleomparison, some IIIB-13 V3: Callein the presence of —Watkins93 IIIB-13 V3: UK 	gp120() (1992), Laman (1993), Divide known as 1044–13 and a tralizes IIIB but not MN – uded in a panel of antibore neutralization of strains and IIIB-V3-13 – a neutral f broadly neutralizing sera Medical Research Counci	s IIIB-V3-13 (J. P. Moor Laman92 odies used in a multi-lab other than IIIB –D'Souz ization escape mutant (H a – IIIB-V3-13 neutraliza 1 AIDS reagent: ARP304	re, per. comm.) o study for antibody c a94 IXB2 A281V) was sele ation was only slightly	ected by growth of	HXB2
404 A47/B1	gp160(309–318) References: [Akerblo	gp120()	IQRGPGRAFV	L	IIIB gp120	murine(IgG)
405 G44/H7	gp160(309–318) References: [Akerblo	gp120() om (1990)]	IQRGPGRAFV	L	IIIB gp120	murine(IgG)
406 D59/A2	gp160(309–318) References: [Akerblo	gp120() om (1990)]	IQRGPGRAFV	L	IIIB gp120	murine(IgG)
407 mu5.5	mu5.5: sCD4 ca contrast to MAbmu5.5: Rmu5.5 i	gp120() (1992), Okamoto (1998)] uses loss of IIIB type-sp mu5.5 –Maeda92 s a humanized antibody o	f mouse MAb m5.5 – ne	eutralized primary isola	ntes with similar V3	

MAb ID	HXB2 Location	Author's Locat	ion Sequence	Neutralizing	Immunogen	Species(Isotype)
108 loop 2	Burton(1997), Mondo loop 2: Also know loop 2: Sequence: loop 2: Called Lo loop 2: MIP-1\alpha b inhibition -Wu96 loop 2: Binds to g loop 2: Viral bin MAbs tested show loop 2: Epitope in neutralize MN and loop 2: Neutralize loop 2: The rank b14 > b13 > DO form (3B3 > b12 oligomeric form a determined by the IgG1 loop 2 is on arm -Parren98 loop 2: The HIV- the activation for YU2 V3 and V1/V	III (1993), Moore (1 r (1998), Parren (1998), Parren (1998) on as Loop 2, IgG ₁ Los of the heavy and lig op 2 – shows modest sinding to CCR-5 expending to CCR-5 expending inhibition by lowed some correlation is suggested to be G d 2 primary isolates the TCLA strains but a corder of FAb binding 142-10 > DA48 > Loop DO142-10 > Loop Loop DO142-10 > Loop Loop DO142-10 Loop DO142-1	994b), Wu (1996), Ditzel (198a), Sullivan (1998a)] oop 2 was a obtained by engight chain Fab variable regions a cross-reactivity among B classessing cells can be inhibited of SF2 but not LAI –Ditzel97 oop 2 MAb or Fab was corresponded by the corresponding of th	neering Fab loop2 into s were generated –Barbade gp120s, little outsid by gp120-sCD4 – bin elated with neutralizati S clade B monomeric Of 10 (Loop 2 > 3B3 > b1 an FAb binding affinity O8i > b14 > DA48 > nd MAbs – authors sugetive of the epitope – b ggesting the IgG1 form ding to the CD4BS, V3 and HxB2 by introducing tralizing concentrations	o an IgG1 molecule bas93 de B clade –Moore94b ding of loop 2 blocks the control of loop 2 blocks the loop 3 blocks t	his ing can is city is cent one pes the
409 5042A	gp160(310–315) References: [Langedi 5042A: Generation	• • • • • •	QrGPGR 91)] of murine MAbs –LangedijkS	L 91	15 mer synthetic BH10 V3 peptide	murine(IgG)
410 5042B	gp160(310–315) References: [Langedi	gp120()	QRGPGr of murine MAbs –Langedijk9	no	15 mer synthetic BH10 V3 peptide	murine(IgG)

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
411 268-D	gp160(310–315)	gp120()	HIGPGR	L	HIV-1 infection	$\text{human}(\text{Ig}G_1\lambda)$

Donor: Susan Zolla-Pazner (NYU Med. Center)

References: [Gorny (1991), D'Souza (1991), Karwowska (1992b), Gorny (1993), Spear (1993), VanCott (1994), Zolla-Pazner (1995), Fontenot (1995), McKeating (1996), Wisnewski (1996), Stamatatos (1997), LaCasse (1998), Zolla-Pazner (1999a), Zolla-Pazner (1999b), Beddows (1999), Oggioni (1999), Laisney & Strosberg(1999)]

- 268-D: Called 268-11-D-IV strain specific weakly neutralizing –D'Souza91
- 268-D: Reacts with MN, NY5, CDC4, RF and SF2, does not cross-react with WM52 or HXB2 -Karwowska92a
- 268-D: Neutralizes MN binds SF2: YIGPGR specificity: MN, SF2, NY5, RF, CDC4 Gorny93
- 268-D: Mediated deposition of complement component C3 on HIV infected cells, but not in the presence of sCD4
 -Spear93
- 268-D: Moderate dissociation rate and homologous neutralization titer –VanCott94
- 268-D: Serotyping study using flow-cytometry, if H of HIGPGR was substituted in virus, 268-D did not bind –Zolla-Pazner95
- 268-D: Failed to neutralize HXB2 and chimeric virus with gp120 from primary isolates in an HXB2 background –McKeating96b
- 268-D: 268-D is V H4 V-region heavy chain usage was examined and a bias of enhanced V H1 and V H4, and reduced V H3, was noted among HIV infected individuals –Wisnewski96
- 268-D: Poor reactivity against HIV-1 isolates SF162 and SF128A and no neutralization, in contrast to MAbs 391/95-D and 257-D –Stamatatos97
- 268-D: A T-cell line-adapted (TCLA) derivative of SI primary isolate 168P acquired the ability to be neutralized by anti-V3 MAbs the primary isolate could use either CCR5 or CXCR4, and was not neutralized when infection was directed via either pathway, however the TCLA derivative uses CXCR4 only and is neutralized –LaCasse98
- 268-D: Review of clade specificity and anti-V3 HIV-1-Abs -Zolla-Pazner99b
- 268-D: Peptide reactivity pattern clustered with immunological related MAbs: 1108, 386, 268, 311, 257, 694.8 the amino acids HI tended to be critical for reactivity in this group MAb 453, with an identical core epitope to 268 based on prior experiments (HIGPGR), was not part of this reactivity group, illustrating that context can be critical –Zolla-Pazner99a
- 268-D: rgp120 derived from a R5X4 subtype B virus, HIV-1 W61D, was used to vaccinate healthy volunteers and the resulting sera were compared with sera from HIV-1 positive subjects and neutralizing MAbs 268-D bound rgp120 W61D but could only neutralize the W61D isolate following T-cell line adaptation –Beddows99
- 268-D: Called 268-11D Study of a live-vector mucosal vaccine that expresses HIV-1 V3 domains using the bacterium Streptococcus gordonii which can express heterologous Ag and can colonize the oral cavity and vagina of mice 268-D and 257-D recognized S. gordonii expressing the V3 domain of MN the vaccine stimulated V3-specific IgG_{2a} in mice –Oggioni99

MAb ID	HXB2 Location	Author's Loc	ation Sequence	Neutralizing	Immunogen	Species(Isotype)
268-D cont.	MAb 268 – two V3 loop and inh with ML gp120 • 268-D: UK Med	hexamers were ide ibit 268 MN gp120 -Laisney99 ical Research Cou	ntify potential mimotopes entified, HLGPGR or KA O – KLH conjugated hexa ncil AIDS reagent: ARP3 eference Reagent Prograr	IHRI that bind to 268 wit mer KAIHRI stimulates	th the same binding s	ite as the
412 386-D	(1999b)] • 386-D: Neutraliz • 386-D: Slow dis: • 386-D: Review of the state of t	wska (1992b), Gor ses MN – binds SF sociation rate, pote of clade specificity eactivity pattern cl	HIGPGR d. Center) rny (1993), VanCott (1994) 2: YIGPGR – specificity rnt homologous neutralize and anti-V3 HIV-1-Abs - ustered with immunologic l for reactivity in this gro	MN, SF2, NY5, RF, CD tion –VanCott94 -Zolla-Pazner99b cal related MAbs: 1108, 3	OC4 –Gorny93	
413 5025B	gp160(310–316) References: [Langed • 5025B: Generati		QRGPGra	no gedijk91	15 mer synthetic BH10 V3 peptide	murine(IgG)
414 418-D	418-D: MN strai418-D: Neutraliz418-D: Review of418-D: Called 4	wska (1992b), Gor n specific, does no tes MN, does not b of clade specificity 18 – MAb peptide with MN V3 peptid	HIGPGRA d. Center) my (1993), Zolla-Pazner (t cross-react with SF2, N yind to SF2 or HXB2 –Go and anti-V3 HIV-1-Abs - reactivity pattern cluster de – the core amino acids	Y5, RF, CDC4 WM52 or rny93 -Zolla-Pazner99b ed with immunological r	HXB2 –Karwowskas elated MAbs: 391.5,	412 and
415 5021	5021: Generatio5021: Binding t	n and fine mapping o native gp120 10	QrGPGRa 90), Langedijk (1991), M g of murine MAbs –Lang 0–300 fold greater than t effect –Moore93c	edijk91	15 mer BH10 V3 peptide ubstitution abolishes	murine(IgG)

MAb ID	HXB2 Location	Author's Location	on Sequence	Neutralizing	Immunogen	Species(Isotype)
116 5042	• 5042: Binding to	gp120() (1988), Durda (1990), No native gp120 100–30 (the loop have little effective properties)	0 fold greater than to den	L natured – 314G/W subst	Peptide titution abolishes bindi	murine()
117 110.3	 110.3: Included a 110.3: MAb variant J kappa2 –Pirofsl 110.3: An anti-ion 	as a control –Evans89 able region sequenced ki93	QRGPGRAF s (1989), Langedijk (1992) – heavy chain: V 7138(40 d against 110.3 both mim)), D deletion, J H4 – lig	ght chain: V kappa21(4	
118 110.4	References: [Kinney Thali (1994), Boudet 110.4: 313 P/S st 110.4: MAb varichain: V kappa21 110.4: Primary is Arendrup93 110.4: gp41 muttineutralizing efficition 110.4: An anti-id 110.4: Neutralizet to the cell – Valen 110.4: Virus with	(1994), Connelly (1994) abstitution in the V3 relabely region sequenced 1, J kappa2 –Pirofski93 colates from different time ation that confers resistency of this V3 region diotypic MAb generated as HIV-1 LAI –McDountion of LAI in CEM central part of the V1-V2 loop deleted 121, 9284, and 110.4, b	(1992b), Langedijk (1992 4), McDougal (1996), Vale gion disrupts binding –Th – heavy chain: V 3660-SI me points from one individ tance to neutralization by MAb –Thali94 d against 110.3 also blocks	enzuela (1998), Cao (19 ali92b B32, D closest to DSP2 lual were not susceptible anti-CD4 binding site a s binding of 110.4 –Con 4 and N11-20 is through sceptible to neutralization	97), Guillerm (1998)] 3, 2.4 and .6, J H2 – li to neutralization by 11 antibodies does not red anelly94 inhibition of viral bind on by CD4i MAb 17b, a	ght 0.4 uce

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
419 110.5	gp160(310–317)	gp120()	QRGPGRAF	L	BRU infected cell lysates	murine($\operatorname{IgG}_1 \kappa$)				
	Donor: E. Kinney-Th	Donor: E. Kinney-Thomas or Genetic Systems, Seattle WA								
	References: [Kinney eating (1992a), Pirofsl Moore & Sodroski(1998a)] • 110.5: Did not induct to MAb intersection of the section of the secti	Thomas (1988), Moore (xi (1993), Moore (1993b), 296), Poignard (1996a), duce dissociation of gp12 ference with detection, as a sensitive to gp120 reduction recease in binding to gp1 egion sequenced – heavy pa2 –Pirofski93 cleavage of V3 loop between the sequence of V3 loop between the	1990), Cordell (1991), S. Thali (1993), Klasse (1 McDougal (1996), Jeff (1996), Jef	p93a), Sattentau (1995), Sis (1996), Binley (1997a), Pancy with Poignard96b pancy with Poignard96b pancy with School Poignard96b pancy with School Poignard96b pancy with School Poignard96b pancy with School Poignard96b pancy of School Poignard96b pancy	, Langedijk (1992), Me Sattentau & Moore (1993), Ugolini (1997), Par o, that was suggested to Poignard study – Moore and .6, J H2 – light channibit C4 region antiborgreater than to denature that confer neutralizate of 110.5 is not affected anti-V2 may be anti-V	95), ren 9 be e90 ain: ody red ion d — oci- ains ling rus, 120 wed				
		ralization is determined b								

MAb ID	HXB2 Location	Author's Locat	ion Sequence	Neutralizing	Immunogen	Species(Isotype)				
420 58.2			HIGPGRAF 993), Moore (1994b), Selitivity and changes in affir			murine($\operatorname{IgG}_1 \kappa$)				
	 isolates were neutralized –WhiteScharf93 58.2: Did not synergistically neutralize MN in combination with MAb F105 – there was synergistic neutralization when combined with sCD4 –Potts93 									
	 58.2: Modest cross-reactivity among B clade gp120s, little outside B clade – core epitope as I-IHIG –Moore94b 58.2: Competition ELISAs with serial deletions produced longer estimates of epitope length, RIHIGPGRAFY, than Alanine substitution, suggesting significance of non-contact residues –Seligman96 									
	• 58.2: The crystal structure of FAb 58.2 bound to V3 loop peptides was obtained – conformational changes in the tip of the V3 loop (GPGR) were observed when different MAbs were bound – 58.2's epitope was defined as KRKRIHIGPGRAFY –Stanfield99									
421 537-D	gp160(311–315)	gp120()	IGPGR	L	HIV-1 infection	$\text{human}(\text{Ig} G_1 \lambda)$				
	Donor: Susan Zolla-Pazner (NYU Med. Center) References: [Karwowska (1992b), Gorny (1992), Gorny (1993), VanCott (1994), Fontenot (1995), Zolla-Pazner (1999a), Zolla-Pazner (1999b)]									
	 537-D: Reacts with MN, NY5, CDC4, RF, WM52 and SF2, but does not cross-react with HXB2 –Karwowska92a 537-D: MN type specific neutralization observed – binds SF2, also IGPGR –Gorny92, Gorny93 									
	 537-D: Moderate homologous neutralization, relatively rapid dissociation constant –VanCott94 537-D: Review of clade specificity and anti-V3 HIV-1-Abs –Zolla-Pazner99b 									
	• 537-D: MAb peptide-reactivity pattern clustered with immunological related MAbs: 1334, 419, 504, 447, 453 and 537 – the core amino acids GP tended to be critical for reactivity in this group –Zolla-Pazner99a									
422 5020	gp160(311–316)	gp120()	RGPGRA	no	15 mer synthetic BH10 V3 peptide	murine(IgG)				
	References: [Langed: • 5020: Generation		murine MAbs –Langedijk	91						

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype)				
423 5023A	gp160(311–317)	gp120()	RgPGRAF	L	15 mer synthetic BH10 V3 peptide	murine(IgG)				
	 5023A: Generation 5023A: Called 5000 5023A: Called 5000 (I/M) in gp41 inte 5023A: Called 5000 using unprocessed 5023A: Called NI 	 References: [Langedijk (1991), D'Souza (1991), Back (1993), Rovinski (1995), Schonning (1998)] 5023A: Generation and Fine mapping of murine MAbs –Langedijk91 5023A: Called 5023 – Langedijk also has an MAb called 5023B – strong cross-reactive neutralizing MAb –D'Souza91 5023A: Called 5023 – Langedijk also has an MAb called 5023B – gp41 amino acid substitutions 668 (N/S) and 675 (I/M) in gp41 interfere with 5023s neutralization potency, region 662–675 is ELDKWANLWNWFNI –Back93 5023A: Called 5023 in this paper – Used to precipitate gp160 in immunoblots in a study examining the feasibility of using unprocessed gp160 glycoprotein as an immunogen –Rovinski95 5023A: Called NEA-9205 – The N306 glycan of the V3 loop makes the tip of the V3 loop inaccessible to this MAb in oligomeric Env, loss of this glycan enhances neutralization sensitivity – Schonning98 								
424 110.6	gp160(311–318)	gp120()	RGPGRAFV	L (weak)	BRU infected cell lysates	murine($\operatorname{IgG}_1\lambda$)				
		egion sequenced – heav	i (1993), Langedijk (1992 y chain: V J558-146b.1alp	, -	6.2, J H3 – light chain	V				
425 polyclonal	gp160(311–318)	gp120()	IGPGRAFY	L	gp120- <i>B. abortus</i> complex (SF2 or MN)	$murine(IgG_{2a})$				
		References: [Golding (1995)] • Ab is evoked even in mice depleted of CD4+ cells								
426 10/54	 10/54: Binding to 10/54: Studied in 10/54: Called 10/ immunodominant C1 and C4 to bind 	virion gp120 enhanced the context of a neutral 54ow/6i/6i: The most v V3 loop less immunog	RGPGRAFVTIG g (1993a), McKeating (1993b), McKeating (1994b), by sCD4 –McKeating 92a ization escape mutant –Mariable amino acids in the enic – these changes did not be binding was dramatically a reduced response relation	a cKeating93b V3 loop were replaced not affect the ability of st lly diminished by V3 s	sCD4 or MAbs to V1/verine substitutions – m	V2, ice				

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)		
427	10/36e	 10/36e: Binding t 10/36e: The most loop less immuno but anti-V3 MAb 	variable amino acids in a genic – these changes di 10/36e binding was dram	RGPGRAFVTIG (1993b), Peet (1998)] by sCD4 –McKeating92a the V3 loop were replaced w id not affect the ability of so natically diminished by V3 so relative to WT, and no enh	CD4 or MAbs to V1. erine substitutions – 1	V2, C1 and C4 to bind mice injected with serin	l, e		
428	11/85b	_	gp120() ing (1992a), McKeating to virion gp120 enhanced	RGPGRAFVTIG (1993b)] by sCD4 –McKeating92a	L (HXB2)	rgp120 BH10	$rat(IgG_{2b})$		
429	polyclonal	gp160(311–322)	gp120()	IGPGRAFYTTKN	L (MN ALA-1)	IGPGRAFYTTKN HRV14:HIV-1 chimera	guinea pig()		
		References: [Smith (1998)] • The tip of the MN V3 loop was inserted into cold causing human rhinovirus 14 (HRV14) – chimeras were immunoselected, and chimeric viruses were neutralized by anti-V3 loop antibodies – chimeric viruses elicited potent NAbs against ALA-1 and MN –Smith98							

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
430 0.5β	gp160(311–324)	gp120()	RGPGRAFVTIGKIG	L (IIIB)	IIIB Env	$murine(IgG_1\kappa)$
	Donor: Shuzo Matsu	shita or Toshio Hattori of	Kumamoto University			
	Deferences [Metaus	hito (1000) Claimman (100)	Oh) Claimnon (1000a) Daita	(1000) North (1000	D'Cours (1001) Mot

References: [Matsushita (1988), Skinner (1988b), Skinner (1988a), Reitz (1988), Nara (1990), D'Souza (1991), Matsushita (1992), Emini (1992), Maeda (1992), McKeating (1992a), Sperlagh (1993), di Marzo Veronese (1993), Moore (1993b), Klasse (1993a), Watkins (1993), Cook (1994), Thali (1994), Okada (1994), Boudet (1994), Broder (1994), Zvi (1995b), Zvi (1995a), Jagodzinski (1996), Warrier (1996), McDougal (1996), Jeffs (1996), Huang (1997), Zvi (1997), Wyatt (1997), Faiman & Horovitz(1997)]

- 0.5\(\beta\): Type-specific neutralization of IIIB does not neutralize MN or RF –Matsushita88,Skinner88
- 0.5β : Emergence of virus resistant to MAb 0.5β and autologous sera neutralization in IIIB infected chimps –Nara90
- 0.5β: Potent neutralizing activity –D'Souza91
- 0.5β: Chimeric mouse-human MAb Cbeta1 was constructed by combining the human Cgamma1 and Ckappa constant regions with the 0.5β murine MAb ADCC and neutralizing activity–Matsushita92
- 0.5β: sCD4 causes loss of IIIB type-specificity, allowing binding and neutralization of MN, in contrast to MAb mu5.5 Maeda92
- 0.5β : Monoclonal anti-idiotype antibodies that mimic the 0.5β epitope were generated –Sperlagh93
- 0.5\(\beta\): Neutralization of virus carrying an A to T substitution (contrast with MAb M77) Veronese93
- 0.5β : Binding to native gp120 100–300 fold greater than to denatured –Moore93c
- 0.5β : The gp41 mutation 582(Ala to Thr) results in conformational changes in gp120 that confer neutralization resistance to some antiserum and conformationally sensitive neutralizing MAbs neutralization efficiency of 0.5β is not affected –Reitz88,Klasse93b
- 0.5β : A neutralization escape mutant (HXB2 A281V) was selected by growth of HXB2 in the presence of broadly neutralizing sera of the MAbs tested, 0.5β neutralization was the most profoundly affected by this mutation –Watkins93
- 0.5β: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells from the brain and colon this MAb can inhibit gp120 binding to GalCer *in vitro* –Cook94
- 0.5β: gp41 mutation that confers resistance to neutralization by anti-CD4 binding site antibodies does not reduce neutralizing efficiency of this V3 region MAb –Thali94
- 0.5β: Binding domain as 310-319: RGPGRAFVTIGKIG mutations in the V3 loop from basic residues can destroy virus infectivity and syncytium formation: 306 R/T,309 R/T and 313 R/G can also reduce binding of V3 MAbs with two different binding sites: 9284 and 0.5β –Okada94
- 0.5β : Type-specific neutralization of IIIB does not neutralize SF2 –Broder94
- 0.5β : The interactions of the peptide RKSIRIQRGPGRAFVT 0.5β were studied by NMR, and hydrophobic interactions between the two Is and the V form the base of a 12 amino acid loop with GPGR at the apex–Zvi95
- 0.5β: NMR of 0.5β bound NNTRKSIRIQRGPGRAFVTIGKIG suggests that the bound amino acids are in the region SIRIQRGP-GRAFVT –Zvi95a
- 0.5β: The sulfated polysaccharide curdlan sulfate (CRDS) binds to the Envelope of T-tropic viruses and neutralizes virus CRDS inhibits 0.5β binding 0.5β epitope described as GPGRAFVTIG –Jagodzinski96
- 0.5\(\beta\): Synergistic neutralization of HIV-1 when combined with anti-V2 MAb C108G –Warrier96
- 0.5β: Deletion of the V1V2 regions did not affect anti-V3 Abs ability to bind when compared to intact rec gp120 –Jeffs96
- 0.5β: Relative to the native peptide, an O-linked alpha-galactosamine modified V3 peptide enhanced binding to 0.5 beta, while an N-linked beta-glucosamine modified peptide showed reduced binding –Huang97

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
0.5β cont.	 0.5β: Binds both gp41 binding –W 0.5β: The Fv fra 0.5β: UK Medic 	gp120 and soluble gp12 /yatt97 gment was purified and tl al Research Council AIE	3 peptide bound to the FA 0+gp41 complex efficient ne temperature dependence OS reagent: ARP3025 & Reagent Program: 1591	ely, suggesting its gp	120 epitope is not	·
431 Cβ1		·	RGPGRAFVTIGKIG fers protection against ch	L uallenge with homolo	IIIB Env	human (IgG 1) 0.5β chimera() us – mouse
432 NM-01	NM-01: Resista Yoshida97NM-01: The tip immunoselected,	of the MN V3 loop was and chimeric viruses we	GPGR Smith (1998)] by propagation of molecular inserted into cold causing are neutralized by anti-V3 Abs in guinea pigs agains	human rhinovirus i	14 (HRV14) – chin d NM-01 was amo	meras were
433 1026	• 1026: Bound div		GPGRAF 1994)] activity against MN, clos strain T-CSF, derived fro			murine(IgG) nte JR-CSF
434 1034	 1034: Greater at GPGRAF –Bou- 	Habib94	GPGRAF 97)] -CSF, derived from JR-C ough cases from a MN gj	-	•	murine(IgG) SF, close to

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
435 59.1	gp160(312–317)	gp120(308–313 MN)	GPGRAF	L	cyclic V3 MN peptide	$murine(IgG_1) \\$			
	References: [D'Souz Seligman (1996), Ghi	Scharf and A. Profy, Replig ta (1991), White-Scharf (1991), White-Scharf (1991), Smith (1998), Smith	93), Potts (1993), tanfield (1999)] (MAb –D'Souza9) y and binding afform the V3 combined with some pride from the V3 combined assay consproduced longer suggesting signification of the tip of the V59.1 and an MN poide is more ordered ted into cold causin neutralized by any in guinea pigs agales bound to FAbs	inity with amino acid sub- inity with amino acid sub- inity with amino acid sub- inity with amino acid sub- posed in the CD4BS MAb F1 loop bound to 59.1 Fab fra mary isolate JR-CSF, from we omparison – neutralizes MN estimate of epitope length the cance of non-contact residue 3 loop was constructed and expetide and 59.1 and the mode in solution, retaining the Fa- ing human rhinovirus 14 (Hii-V3 loop antibodies, and 3 inst ALA-1 and MN –Smith was obtained – conformation	stitutions – GPGRAF 05 –Potts93 gment – contact residu which T-CSF was derive and IIIB –D'Souza94 nan x-ray crystallograph es –Seligman96 I bound with Fab 59.1 lified peptide are simila b bound form –Ghiara IRV14) – chimeras we 59.1 was among the A	es ed hy arr, 97 ore bs			
436 N11-20	References: [Valenzu	ization of LAI in CEM cel	GPGRAFVTI ls by anti-V3 MA	L (LAI) bs 110.4 and N11-20 is thi	unk rough inhibition of vir	$\operatorname{murine}(\operatorname{Ig} \operatorname{G}_1 \kappa)$ us			
137 5025A	gp160(313-317)	gp120()	pgRAF	L	15 mer synthetic BH10 V3 peptide	murine(IgG)			
	Donor: Paul Durda, Du Pont de Nemours and Co References: [Langedijk (1991), D'Souza (1991)] • 5025A: Generation and fine mapping of murine MAbs –Langedijk91 • 5025: Called 5025 – strain specific weakly neutralizing –D'Souza91								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
438 N70-1.9b	• N70-1.9b: Type s	gp120() on (1990a), Scott Jr (1990 pecificity –Robinson90c pecific neutralization, A		L MN infected cells –Scotts	HIV-1 infection	human(IgG ₁)			
439 902	 gp160(313–324) gp120() PGRAFVTIGKIG L vaccinia-gp160 IIIB murine(IgG₁κ) Donor: Bruce Chesebro, Rocky Mountain National Laboratory, Montana References: [Chesebro & Wehrly(1988), Laman (1993), Broder (1994), Earl (1994)] 902: Strain specific neutralization of HIV –Chesebro88 902: Epitope may be partially masked or altered in the oligomeric molecule –Broder94 902: Used as a control in a study of the influence of oligomeric structure of Env in determining the repertoire of the Ab response –Earl94 902: V3-BH10 peptide with loop-structure inhibits IL-2 induced T-cell proliferation, thought to be due to altering intracellular signaling, and MAb 908 can block the peptide inhibition –Sakaida97 								
	• 902: NIH AIDS I	Research and Reference	Reagent Program: 522						
440 694/98-D	References: [Gorny (VanCott (1994), Coold Smith (1998), Li (1998) Altmeyer (1999)] • 694/98-D: MAb from the following of the	k (1994), VanCott (1995), Andrus (1998), Nyam first described –Skinner8 pecific lab isolate neutrally92 dizes MN and IIIB (GRAGorny93) 694-D – complement meutralization of HIV-IIIE	orny (1993), Cavacini (i), Zolla-Pazner (1995) bi (1998), Schonning (8 lization was observed of the control o	(1993a), Spear (1993), G), Forthal (1995), Li (19 1998), Zolla-Pazner (199 – binds with 1–3 fold gre AF) – binding reactivity: B, but not in the presence	eater affinity to gp120 to MN, IIIB, SF2, NY5, a of sCD4 –Spear93	97), 9b), nan RF,			

cells from the brain and colon – V3 MAbs can inhibit gp120 binding to GalCer in vitro – binding of GalCer to gp120

inhibited but did not completely block MAb binding-Cook94

MAb ID HXB2 Location Author's Location Sequence Neutralizing Immunogen Species(Isotype)

694/98-D cont.

- 694/98-D: Human HIV-1 infected sera and MAb 694/98 have high reactivity to MN and RF infected H9 cells, but Genentech rec gp120 IIIB vaccine recipients do not -VanCott95
- 694/98-D: Serotyping study using flow-cytometry bound GRAX bearing virus in 10/11 cases somewhat conformation dependent –Zolla-Pazner95
- 694/98-D: ADCC activity, and no viral enhancing activity –Forthal95
- 694/98-D: One of 14 human MAbs tested for ability to neutralize a chimeric SHIV-vpu+, which expressed HIV-1 IIIB env could only achieve 50% neutralization alone all Ab combinations tested showed synergistic neutralization 694/98-D has synergistic response with MAbs F105, 15e, b12, 2F5, 17b, 2G12, and 48d, and with HIVIG –Li97
- 694/98-D: Used to study pre- and post-exposure prophylaxis Hu-PBL-SCID mice infected by an intraperitoneal injection of HIV-1 LAI MAb half-life in plasma in mice is 9 days 2 hours post-694/98-D mice were challenged with LAI, and at an Ab concentration of 1.32 mg/Kg, 50% of the mice were infected; one of the infected mice carried the resistant form GRTF rather than GRAF (critical amino acids for binding are GRA) post-exposure prophylaxis was effective if delivered 15 min post-exposure, but declined to 50% if delivered 60 min post-exposure, and similar time constraints have been observed for HIVIG, 2F5 and 2G12, in contrast to MAb BAT123 that could protect delivered 4 hours post infection –Andrus98
- 694/98-D: The tip of the MN V3 loop was inserted into cold causing human rhinovirus 14 (HRV14) chimeras were immunoselected, and chimeric viruses were neutralized by anti-V3 loop antibodies, and 694/98-D was among the Abs used – chimeric viruses elicited potent NAbs in guinea pigs against ALA-1 and MN –Smith98
- 694/98-D: Neutralization synergy was observed when the MAbs 694/98-D (V3), 2F5 (gp41), and 2G12 (gp120 discontinuous) were used in combination, and even greater neutralizing potential was seen with the addition of a fourth MAb, F105 (CD4 BS) –Li98
- 694/98-D: Using a whole virion-ELISA method, 18 human MAbs were tested for their ability to bind to a panel of 9 viruses from clades A, B, D, F, G, and H – 694/98-D bound only to B and D clade virions and had limited cross reactivity –Nyambi98
- 694/98-D: In a study of the influence of the glycan at position 306 of the V3 loop on MAb recognition, anti-V3 MAbs were found to neutralize an HIV-BRU mutant virus that lacks the V3 loop glycan more efficiently than HIV-BRU – Schonning98
- 694/98-D: Review of clade specificity and anti-V3 HIV-1-Abs –Zolla-Pazner99b
- 694/98-D: MAb peptide reactivity pattern clustered with immunological related MAbs: 1108, 386, 268, 311, 257, 694.8 the amino acids HI tended to be critical for reactivity in this group –Zolla-Pazner99a
- 694/98-D: A Semliki Forest virus (SFV) expression system carrying BX08 env was used to study the conformation of gp120 intracytoplasmic gp120 was recognized by the anti-V3 MAbs K24 and F5.5, while gp120 at the plasma membrane was detected only by conformation dependent MAbs 2G12, 670-D and 694/98D and not linear V3 MAbs expression in rat brain also showed that surface-expressed Env was recognized only by the conformation-dependent antibodies and not by anti-V3 antibodies –Altmeyer99

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
41 9205	 9205: Called NE kDa molecular w 9205: Synergy v Allaway93 	1990), Trujillo (1993), A A-9205, epitope RIQRG eight – similar to 9284 –' with combinations of CI	RAF (core reactivity) Allaway (1993), VanCott (19 BPGRAFVTIGK – reacts w Trujillo93 D4-based molecules in inhi	ith three human brai	n proteins of 35, 55, 1 v mediated cell fusion				
42 110.I	References: [Moore Wyatt (1997), Parren • 110.I: Binds to ca • 110.I: Binds equ Sattentau95a • 110.I: Reciprocal MAbs – binding • 110.I: Epitope su increase gp120 d to anti-V2 MAbs • 110.I: Binds both by gp41 binding • 110.I: The MAb a	(1998a)] urboxy-terminal side of the ally well to monomer and binding inhibition with the enhanced by some anti-Conguested to be RAFVTIGUES association from virus, manual properties and soluble gp12 and soluble gp12 wyatt97 and Fab binding to the oliginal properties.	AFVTIGK , Sattentau & Moore(1995), ne V3 loop – inhibits bindin nd oligomer, rapid associate other anti-V3 and anti-C4 M D4 binding site MAbs –Mo GK – V3 MAbs 9284, BAT1 nimicking sCD4, and expose 20+gp41 complex efficiently gomeric form of gp120 and by the fraction of Ab sites of	g of C4 region MAb ion and potent neutralization were had enhanced to be a superior of the gp41 epitope for the gp	G3-299 –Moore93c ralization of lab strains binding of some anti-1 I could each significant MAb 50-69, in contra 20 epitope is not block ighly correlated – author	v2 tly ast ed			
443 IIIB-V3-01									

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
444	D/6D1	gp160(346–377)	gp120()	ASKLREQFGNNKTIIFK- QSSGGDPEIVTHSFN	no	Baculovirus- expressed rgp120 LAI	$murine(IgG_1)$			
		References: [Bristow (1994)] • D/6D1: V4 MAb generated in a study of the humoral immune response to rgp120 and rgp160 –Bristow94								
445	4D7/4	gp160(360–380)	gp120()	IFKQSSGGDPEIVTHSF- NCGG		Env glycopro	murine(IgG)			
			[1994c)]	denatured/native gp120 is >10 S reagent: ARP3051) –Moore94a					
446	36.1(ARP 329)	gp160(361–381)	gp120()	FKQSSGGDPEIVTHSFN- CGGE		Env glycopro	murine(IgG)			
	32)	References: [Thiriart (1989), Moore (1994c)] • 36.1: The relative affinity for denatured/native gp120 is >30 – mutations 380 G/F, 381 E/P impair binding –Moore94a • 36.1: UK Medical Research Council AIDS reagent: ARP329								
447	C12	gp160(361–381)	gp120()	FKQSSGGDPEIVTHSFN- CGGE		mis-folded LAI	murine(IgG ₁)			
		 Donor: George Lewis References: [Moore & Ho(1993), Moore (1994c), Abacioglu (1994), Moore (1994d)] C12: Bound preferentially to denatured IIIB gp120 –Moore93a C12: The relative affinity for denatured/native gp120 is >30 – mutations 380 G/F, 381 E/P, and 384 Y/E impair binding – also binds GEFFYCNSTQLFNS, gp120(380-393 LAI) –Moore94a C12: C3 region – epitope boundaries mapped by peptide scanning, core FNCGG –Abacioglu94 								
448	110.D	References: [Moore (gp120() Pasteur Institute, France 1994c), Valenzuela (1998 ve affinity for denatured/n	GEFFYCNSTQLFNS [6] ative gp120 is >50 –Moore94a	no a	Env glycopro	murine(IgG)			

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
449 B32	gp160(380–393)	gp120(380–393 LAI)	GEFFYCNSTQLFNS		mis-folded LAI rgp160	murine(IgG ₁)				
	 References: [Moore (1994c), Abacioglu (1994)] B32: The relative affinity for denatured/native gp120 is >100 – mutations 380 G/F, 381 G/P, 382 F/L, 384 Y/E, and 386 N/R impair binding –Moore94a B32: C3 region – epitope boundaries mapped by peptide scanning – FFY(core) –Abacioglu94 									
450 B15	gp160(395–400)	gp120()	WFNSTW		mis-folded LAI rgp160	$murine(IgG_{2b})$				
	B15: Bound prefB15: Binds nativeMoore93c	& Ho(1993), Moore (1993b) erentially to denatured IIIB e BH10 gp120 with 5 fold le			e or denatured MN gp12	20				
451 B34	gp160(395–400) References: [Abacio	gp120() glu (1994)]	WFNSTW		mis-folded LAI rgp160	$murine(IgG_{2b})$				
	• B34: V4 region -	epitope boundaries mappe	ed by peptide scanning –Aba	cioglu94						
452 7F11	gp160(397–439) References: [Lasky (• 7F11: There is an		that binds to integrase –Nils	sen96	purified gp120	murine()				
453 5C2E5	References: [Lasky (• 5C2E5: Blocks the	gp120() nd R. Ward, Genentech, Sar 1987), Cordell (1991)] ne gp120-CD4 interaction – ompetition with MAbs 5C2B		-Cordell91	purified gp120	murine()				
454 G3-211	gp160(423–437)	gp120()	IINMWQKVGKAMYAP	L	virus derived IIIB gp120	murine(IgG ₁)				
	References: [Sun (1989)] • G3-211, 42, 299, 508, 519, 536, 537: Cross-react with diverse strains by immunofluorescence – blocks HIV binding to CD4+ cells – different neutralization efficiencies –Sun89									

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
455 G3-537	gp160(423–437)	gp120()	IINMWQKVGKAMYAP	L	virus derived IIIB gp120	$murine(IgG_1)$
	• G3-537, 211, 299 to CD4+ cells – c	lifferent neutralization effic	react with diverse strains by in			
456 polyclonal	gp160(425–436)	gp120()	NMWQEVGKAMYA	L	oral immunization – peptide plus cholera toxin adjuvant	murine(IgA)
	-	ory IgA antibody raised by	mucosal immunization is able 04 or HPG30 component of			
457 1795	gp160(425–441)	gp120(425–441 IIIB)	NMWQEVGKAMYAPPIS	G L	poliovirus env chimera	()
	References: [McKea • 1795: CD4 bindi -McKeating92	<u> </u>	ng – binding inhibited by WÇ)EVGKAMYA, (GKAM may be involved	d

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)	
458 G3-42	gp160(429–438)	gp120()	EVGKAMYAPP	L	virus derived IIIB gp120	murine(IgG ₁)	

Donor: Tanox Biosystems Inc and David Ho, ADARC, NY

References: [Sun (1989), Moore (1993b), Thali (1993), Sattentau & Moore(1995), Jagodzinski (1996), Moore & Sodroski(1996), Poignard (1996a), Trkola (1996a), Binley (1997a), Binley (1999)]

- G3-42: Neutralization of IIIB but not RF –Sun89
- G3-42: C4 region binds HXB2 20mer KQIINMWQKVGKAMYAPPIS, and SF-2 and MN gp120s G3-42, G3-299 have lower affinity than G3-508, G3-519, and G3-536 bound native gp120, not denatured poor peptide binding, epitope spans V3-C4 regions 433A/L, 435Y/H and 430V/S substitutions impaired binding, V3 loop insertion abolished binding –Moore93c
- G3-42: Inhibits binding of CD4 inducible MAb 48d Thali93
- G3-42: Binds with higher affinity to monomer than to oligomer, slow association rate –Sattentau95a
- G3-42: The sulfated polysaccharide curdlan sulfate (CRDS) binds to the Envelope of T-tropic viruses and neutralizes virus CRDS potently inhibits G3-42 binding G3-42 epitope described as KVGKAMYAPP –Jagodzinski96
- G3-42: Inhibits binding of many anti-V3, -CD4 binding site, and -C4 region MAbs enhances binding of some anti-V2 region MAbs –Moore96
- G3-42: Epitope described as KQIINMWQKVGKAMYAPPIS binding resulted in slight gp120 dissociation from virus and exposure of the gp41 epitope for MAb 50–69 –Poignard96b
- G3-42: Called G3 42 Does not inhibit gp120 interaction with CCR-5 in a MIP-1β-CCR-5 competition study described as V3-C4 discontinuous epitope –Trkola96b
- G3-42: The MAbs with the broadest neutralizing activity, IgG₁b12, 2G12 and 2F5, all have high affinity for the native trimer, indicating that they were raised in an immune response to the oligomer on the virion surface rather than dissociated subunits a disulfide linked gp120-gp41 (SOS gp140) was created to mimic the native conformation of Env and explore its potential as an immunogen SOS gp140 is recognized by NAbs IgG1b12, 2G12, and CD4-IgG2, and also by anti-V3 MAbs 19b and 83.1 SOSgp140 is not recognized by C4 region MAbs that neutralize only TCLA strains, G3-42 and G3-519; nor did it bind C11, 23A, and M90, MAbs that bind to gp120 C1 and C5, where it interacts with gp41 MAbs that bind CD4 inducible epitopes, 17b and A32 were very strongly induced by CD4 in SOS gp140 anti-gp41 MAbs that bind in the region that interacts with gp120, 7B2, 2.2B, T4, T15G1 and 4D4, did not bind to SOSgp140, in contrast to 2F5, which binds to the only gp41 epitope that is well exposed in native gp120-gp41 complexes –Binley00

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
459	G3-299	gp160(429–438)	gp120()	EVGKAMYAPP	L	virus derived IIIB gp120	$murine(IgG_1)$				
		Donor: M. Fung and	Donor: M. Fung and Tanox Biosystems Inc and David Ho, ADARC, NY								
		Poignard (1996a), Binle	y								
	• G3-299: Best neutralization of IIIB in panel of 7 MAbs that bind overlapping epitope –Sun89										
		• G3-299: C4 region – binds HXB2 20mer KQIINMWQKVGKAMYAPPIS, and SF-2 and MN gp120s – G3-42, G3-299 lower affinity than G3-508, G3-519, and G3-536 – bound native gp120, not denatured – poor peptide binding,									
		 epitope spans V3-C4 regions – 433A/L, 435Y/H and 430V/S substitutions impaired binding, V3 loop cleavage or insertion abolished binding –Moore93c G3-299: Binds with higher affinity to monomer than to oligomer, slow association rate, although faster than other 									
			*	zation of lab strain –Sattent		1, 1, 1, 1, 1, 1, 2, 3, 4, 1					
			1 1	ding enhanced by a few and		•					
			•	IAbs – G3-229 enhances th	-						
				OKVGKAMYAPPIS – bind MAb 50–69 –Poignard96b	ing resulted in siign	t gp120 dissociation from	n				
		<u> </u>		20+gp41 complex efficientl	v suggesting its an	120 anitana is not blocka	d				
		by gp41 binding –		20+gp41 complex emclenu	y, suggesting its gp	120 epitope is not blocke	u				
		. 01	•	oligomeric form of an 120	and neutralization	were highly correlated.	_				
		 G3-299: The MAb and Fab binding to the oligomeric form of gp120 and neutralization were highly correlated – authors suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the 									
		epitope –Parren98		inica by the fraction of Ab	sites occupied on a	virion mespective of th	C				

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
460 G3-508	gp160(429–438)	gp120()	EVGKAMYAPP	L	virus derived IIIB gp120	$murine(IgG_1)$			
	 Donor: M. Fung and Tanox Biosystems Inc and David Ho, ADARC, NY References: [Sun (1989), Thali (1993), Moore (1993b), Sattentau & Moore(1995), Moore & Sodroski(1996), Poignard (1996a), Trkola (1996a), Binley (1997a), Parren (1998a), Binley (1998)] G3-508: Neutralization of IIIB and RF –Sun89 G3-508: Inhibits binding of CD4 inducible MAb 48d –Thali93 G3-508: C4 region – binds HXB2 20mer KQIINMWQKVGKAMYAPPIS, and SF-2 and MN gp120s – bound denatured with 10 fold greater affinity than native – 433A/L, 435Y/H and 430V/S substitutions impaired binding –Moore93c 								
	 G3-508: Binds with higher affinity to monomer than to oligomer, slow association rate –Sattentau95a G3-508: Inhibits binding of some V3, C4 and CD4 binding site MAbs, enhances binding of V2 region MAbs –Moore96 G3-508: Binding resulted in slight gp120 dissociation from virus and exposure of the gp41 epitope for MAb 50–69 –Poignard96b 								
	 G3-508: Called G3 508 – inhibits gp120 interaction with CCR-5 in a MIP-1β-CCR-5 competition study –Trkola96b G3-508: The MAb and Fab binding to the oligomeric form of gp120 and neutralization were highly correlated – authors suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the epitope –Parren98 G3-508: A panel of MAbs were shown to bind with similar or greater affinity and similar competition profiles to a deglycosylated or variable loop deleted core gp120 protein (Delta V1, V2, and V3), thus such a core protein produces 								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
	1.60/420, 420)		1							
461 G3-519	gp160(429–438)	gp120()	EVGKAMYAPP	L	virus derived IIIB gp120	$murine(IgG_1)$				
	Donor: Tanox Biosystems Inc and David Ho, ADARC, NY									
	References: [Sun (1989), Moore & Ho(1993), Moore (1993b), D'Souza (1994), Sattentau & Moore(1995), Moore &									
	Sodroski(1996), Poig	Sodroski(1996), Poignard (1996a), Binley (1997a), Wyatt (1997), Parren (1998a), Binley (1999)]								
	• G3-519: Best ne	utralization of RF in panel	l of 7 MAbs that bind over	lapping epitope -Sun	89					
	• G3-519: Neutra	• G3-519: Neutralizes IIIB, is reactive with SF-2 gp120, mild inhibition of HIV-1+ sera binding to IIIB gp120 –								
	Moore93a									
	• G3-519: C4 reg	rion – binds HXB2 20me	r KQIINMWQKVGKAM	YAPPIS, and SF-2 a	and MN gp120s - bou	ınd				

- G3-519: C4 region binds HXB2 20mer KQIINMWQKVGKAMYAPPIS, and SF-2 and MN gp120s bound denatured with 5 fold greater affinity than native 433A/L, 435Y/H, 438P/R and 430V/S substitutions impaired binding –Moore93c
- G3-519: Included in a multi-lab study for antibody characterization, and binding and neutralization assay comparison, also binds IIIB: IINMWQKVGKAMYAPP –D'Souza94
- G3-519: Binds with higher affinity to monomer than to oligomer, slow association rate –Sattentau95a
- G3-519: Non-reciprocal enhanced binding in the presence of the C5 MAb 1C1 and the C1 MAb 135/9 reciprocal enhanced binding with some V2 MAbs. Inhibited binding the presence of some C4, V3 and CD4 binding site MAbs –Moore96
- G3-519: Epitope described as KVGKAMYAPP binding resulted in slight gp120 dissociation from virus but no significant exposure of the gp41 epitope for MAb 50–69 –Poignard96b
- G3-519: Binds both gp120 and soluble gp120+gp41 complex efficiently, suggesting its gp120 epitope is not blocked by gp41 binding –Wyatt97
- G3-519: The MAb and Fab binding to the oligomeric form of gp120 and neutralization were highly correlated authors suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the epitope –Parren98
- G3-519: The MAbs with the broadest neutralizing activity, IgG₁b12, 2G12 and 2F5, all have high affinity for the native trimer, indicating that they were raised in an immune response to the oligomer on the virion surface rather than dissociated subunits a disulfide linked gp120-gp41 (SOS gp140) was created to mimic the native conformation of Env and explore its potential as an immunogen SOS gp140 is recognized by NAbs IgG1b12, 2G12, and CD4-IgG2, and also by anti-V3 MAbs 19b and 83.1 SOSgp140 is not recognized by C4 region MAbs that neutralize only TCLA strains, G3-42 and G3-519; nor did it bind C11, 23A, and M90, MAbs that bind to gp120 C1 and C5, where it interacts with gp41 MAbs that bind CD4 inducible epitopes, 17b and A32 were very strongly induced by CD4 in SOS gp140 anti-gp41 MAbs that bind in the region that interacts with gp120, 7B2, 2.2B, T4, T15G1 and 4D4, did not bind to SOSgp140, in contrast to 2F5, which binds to the only gp41 epitope that is well exposed in native gp120-gp41 complexes –Binley00

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
462 G3-536	gp160(429–438)	gp120()	EVGKAMYAPP	L	virus derived IIIB gp120	$murine(IgG_1) \\$			
	References: [Sun (19 (1994), Sattentau & M	tems Inc and David Ho, A 89), Ho (1991b), Cordell Ioore(1995), Moore & So utralization of IIIB and R	(1991), McKeating (1992) odroski(1996), Poignard (1996a), Parren (1998a)]	•			
	 binding to CD4+ cells – epitope:IINMWQKVGKAMYAP –Sun89 G3-536: Cross-competition with MAbs 5C2E5, ICR38.8f and ICR38.1a –Cordell91 G3-536: Weakly neutralizing – binds to a linear determinant in the CD4 binding domain of gp120 –McKeating92 G3-536: Neutralizes IIIB, is reactive with SF-2 gp120, mild inhibition of HIV-1+ sera binding to IIIB gp120 – 								
	Moore93a • G3-536: C4 region – binds HXB2 20mer KQIINMWQKVGKAMYAPPIS, and SF-2 and MN gp120s – bound denatured with 15 fold greater affinity than native – 433A/L, 435Y/H, 438P/R, and 430V/S substitutions impaired binding –Moore93c								
	 G3-536: Enhances binding of anti-V2 MAb 697-D –Gorny94 G3-536: Binds with higher affinity to monomer than to oligomer, slow association rate –Sattentau95a G3-536: Inhibits binding of some V3, C4 and CD4 binding site MAbs, enhances binding of V2 region MAbs –Moore96 								
	 G3-536: Epitope described as KVGKAMYAPP –Poignard96b G3-536: The MAb and Fab binding to the oligomeric form of gp120 and neutralization were highly correlated – authors suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the epitope –Parren98 								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
463 ICR38.1a	eating (1993a), Moore ICR38.1a: Weak MAbs G3-536, 5 ICR38.1a: Unable that binds to a co ICR38.1a: Studie ICR38.1a: Unread were initially rep ICR38.1a: Called —Jeffs96 ICR38.1a: The m V3 loop less imm — ICR38.1a was more response relative ICR38.1a: Called activity is additive—Kropelin98	gp120(427–436 BRU) (1991), McKeating (1992b) (1993b), Jeffs (1996), Peet ly neutralizing – binds line C2E5, and ICR38.8f –McKe e to exert a synergistic effect informational epitope involved in the context of a neutral active with solid-phase decaperted to be independent MA 138.1a – 10 to 20 fold incre most variable amino acids in nunogenic – these changes d not affected by V3 serine sul to WT, and no enhanced im 1388/389 – anti-C1 region when combined with antib dedical Research Council Al	o, McKeating (1992a), Mc (1998), Kropelin (1998)] ar determinant in the CD eating 92, Cordell 91 at in combination with V3 ed in CD4 binding –McKe ization escape mutant –M peptide, competed in solutes, but are actually subcleased binding when V1/V2 the V3 loop were replaced in	o4 binding domain – 3 directed MAbs, in of eating 92a (cKeating 93b) (ction phase assay – Io comes of the same MA 2 or V1/V2 and V3 w (d with serines to mal sCD4 or MAbs to V (d with serine substituted regions – Peet 98 (d) 120 interaction with C4 region of gp120 (Io	cross-competition we contrast to MAb 39.13 CR 38.1a and ICR 38 b –Moore93c were deleted from gp1 ke the immunodominal/V2, C1 and C4 to bited gp120 had a reductive CD4+ cells – blocking cross-competition with the contraction of the contractio	ith 3g, .8f 20 ant and sed
464 ICR38.8f	ICR38.1a, 5C2E5	ly neutralizing – binds line 5, and G3-536 –Cordell91 .1a and ICR 38.8f were initi			•	
465 MO86/C3	gp160(429–443) References: [Ohlin (• MO86: Generate	gp120() 1992)] d through <i>in vitro</i> "immuniz	EVGKAMYAPPISGQI		rIIIB Env 286-467	human(IgM)

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
466 G45-60	gp160(431–440)	gp120()	GKAMYAPPIS	L	virus derived IIIB gp120	murine(IgG ₁)				
	References: [Sun (1989), Moore (1993b), Gorny (1994), Moore & Sodroski(1996), Jagodzinski (1996)]									
	• G45-60: C4 region – binds HXB2 20mer KQIINMWQKVGKAMYAPPI, decapeptide flanking peptides also bound									
	 bound equivalently to native and denatured gp120 – 433A/L and 435Y/H (not 430V/S) substitutions impaired binding –Moore93c 									
	• G45-60: Enhance	es binding of anti-V2 MAI	o 697-D –Gorny94							
		iprocal enhancement of G								
	of some V2 region MAbs – reciprocal inhibition with many MAbs that bind to the V3, C4 and CD4 binding site regions –Moore96									
		ated polysaccharide curdla pits G45-60 binding –Jago		the Envelope of T-tro	pic viruses and neutraliz	zes				
467 13H8	gp160(431–440) References: [Nakami	gp120() ura (1992), Nakamura (19	GKAMYAPPIS 93), Jeffs (1996)]	L	rgp120 MN	murine(IgG)				
	• 13H8: Cross blocks 5C2 in IIIB-rsgp160 ELISA – reactive with diverse strains in rgp120 ELISA –Nakamura92									
	• 13H8: Bound diverse strains, neutralizing activity against MN –Nakamura93									
	 13H8: Binds V3 and C4 peptides (J. P. Moore, per. comm.) 13H8: 3 and 4.5 fold increased binding when V1/V2 or V1/V2 and V3 were deleted from gp120, respectively –Jeffs96 									
	• 13H8: 3 and 4.5 f	old increased binding whe	n V1/V2 or V1/V2 and V3	were deleted from gp	120, respectively –Jeffs	96				
468 1662	gp160(433–439)	gp120()	AMYAPPI							
				no	poliovirus-antigen chimera	()				
	References: [McKeat	ing (1992b)]		no	chimera	()				
	References: [McKeat • 1662: Did not bir	ting (1992b)] nd to native gp120, epitopo	e not exposed –McKeatin		-	()				
469 1663	_	<u> </u>	e not exposed –McKeatin		-	()				
469 1663	• 1662: Did not bir	gp120()	•	g92	chimera poliovirus-antigen					
469 1663	• 1662: Did not bin gp160(433–439) References: [McKeat	gp120()	AMYAPPI	g92 no	chimera poliovirus-antigen					
469 1663 470 1664	• 1662: Did not bin gp160(433–439) References: [McKeat	gp120() ting (1992b)]	AMYAPPI	g92 no	chimera poliovirus-antigen					

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
471 1697	gp160(433–439)	gp120()	AMYAPPI	no	poliovirus-antigen chimera	()			
	_	References: [McKeating (1992b)]							
	• 1697: Did not bir	nd to native gp120, epitope	e not exposed –McKeating92						
472 1794	gp160(433-442)	gp120()	AMYAPPISGQ	no	poliovirus env chimera	()			
	References: [McKear	ting (1992b)]							
	• 1794: Did not bir	nd to native gp120, epitopo	e not exposed –McKeating92						
473 1804	gp160(433–442)	gp120()	AMYAPPISGQ	no	poliovirus env chimera	()			
	References: [McKeating (1992b)] • 1804: Did not bind to native gp120, epitope not exposed –McKeating92								
474 1807	gp160(433–442)	gp120()	AMYAPPISGQ	no	poliovirus env chimera	()			
	References: [McKear • 1807: Did not bin	ting (1992b)] nd to native gp120, epitope							
475 1808	gp160(433–442)	gp120()	AMYAPPISGQ	no	poliovirus env chimera	()			
	References: [McKeating (1992b)] • 1808: Did not bind to native gp120, epitope not exposed –McKeating92								
476 polyclonal	gp160(460–467)	gp120()	NNNNGSEI		HIV-1 infection augmented by	human(unk)			
	gp160 vaccine References: [Loomis-Price (1997)] • HIV-1+ positive individuals were given a gp160 vaccine as immunotherapy, and this region was the most reactive new epitope as measured by a modified Pepscan technique which improved sensitivity – 4/14 showed vaccine-induced reactivity –Loomis-Price97								

MAb 1	ID H	XB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
477 M91		160(461–470)	gp120() Veronese	SNNESEIFRL	no	451 Env	$rat(IgG_{2a})$			
	(1)	 Donor: Fulvia di Marzo Veronese References: [di Marzo Veronese (1992), Moore (1994c), Moore (1994d), Moore & Sodroski(1996), Ditzel (1997), Binley (1998)] M91: Immunoblot reactive, RIP negative, but precipitates deglycosylated gp120 – reacts with strains IIIB, 451, MN, RF, and RUTZ – Veronese92 M91: The relative affinity for denatured/native gp120 is 24 – mutation in position 470 P/L impairs binding – Moore94a M91: 470 P/L impairs binding, but not 475 D/V, in contrast to CRA1 – some C2 mutations can enhance binding – Moore94c M91: C5 region linear epitope, binds weakly to nondenatured monomeric gp120 – M91 binding was enhanced by 1C1, but 1C1 binding was inhibited by M91 – non-reciprocal binding enhancement of C1 and V2 antibodies – non-reciprocal binding inhibition of CD4 binding site antibodies – Moore96 M91: A panel of MAbs were shown to bind with similar or greater affinity and similar competition profiles to a deglycosylated or variable loop deleted core gp120 protein (Delta V1, V2, and V3), thus such a core protein produces 								
478 CRA1(323)	Do	 a structure closely approximating full length folded monomer –Binley98 P gp160(461–470) gp120() SNNESEIFRL no Env glycopro murine(IgG Donor: M. Page, NIBSC, UK References: [Moore & Ho(1993), Moore (1994d), Moore (1994c), Moore & Sodroski(1996), Trkola (1996a)] CRA1: Bound preferentially to denatured IIIB and SF2 gp120 –Moore93a CRA1: Some C5 mutations abrogate binding 470 P/L or G, 475 M/S, some C2 mutations enhance binding –Moore94c CRA1: The relative affinity for denatured/native gp120 is 24 – C5 mutations 470 P/L or G, 475 M/S impairs binding to the native gp120 – only mutation 470 P/L impairs binding to denatured –Moore94a CRA1: C5 region linear epitope, binds weakly to nondenatured monomeric gp120 – reciprocal binding inhibition with anti-C5 antibodies 1C1 and M91 – non-reciprocal binding enhancement some C1 and V2 antibodies – non-reciprocal binding inhibition of some CD4 binding site antibodies –Moore96 CRA1: Does not neutralize JR-FL nor block gp120 interaction with CCR-5 in a MIP-1β-CCR-5 competition study –Trkola96b 								
479 9201	Do Ro	160(471–482) onor: Du Pont eferences: [McDougal 9201: Does not neut	gp120() (1996)] ralize LAI –McDougal	GGGDMRDNWRSE	no		murine()			

MAb ID	HXB2 Location	Author's Location	n Sequence	Neutralizing	Immunogen	Species(Isotype			
480 9301	gp160(471–490)	gp120()	GGGDMRDNWRSELYK KVVK	ΥΥ-	Env glycopro	murine(IgG)			
	References: [Skinner • 9301: Bound prei • 9301: The relativ	 Donor: Dupont, commercial References: [Skinner (1988b), Moore & Ho(1993), Moore (1994c), Moore (1994d), Wagner (1996)] 9301: Bound preferentially to denatured IIIB gp120 –Moore93a 9301: The relative affinity for denatured/native gp120 is 19 –Moore94c 9301: Wagner et al. claim that Nea 9301 is anti-V3 – might they have meant MAb 9305? –Wagner96 							
481 1C1	gp160(471–490)	gp120()	GGGDMRDNWRSELYK KVVK	ΥΥ-	Env glycopro	murine(IgG)			
	References: [Moore (• 1C1: The relative • 1C1: C2 and V3: • 1C1: Linear epito • 1C1: C5 region 1 1C1, but 1C1 bind	 Donor: Repligen Inc, Cambridge, MA, commercial References: [Moore (1994c), Moore (1994d), VanCott (1995), Moore & Sodroski(1996)] 1C1: The relative affinity for denatured/native gp120 is 15 –Moore94a 1C1: C2 and V3 regions substitutions can influence binding –Moore94c 1C1: Linear epitope not exposed on conformationally intact gp120 –VanCott95 1C1: C5 region linear epitope, binds weakly to nondenatured monomeric gp120 – M91 binding was enhanced by 1C1, but 1C1 binding was inhibited by M91 – non-reciprocal binding enhancement of some C1 and V2 antibodies – non-reciprocal binding inhibition of some CD4 binding site antibodies –Moore96 							
182 B221	gp160(471–490)	gp120()	GGGDMRDNWRSELYK KVVK	XY-	Baculovirus- expressed mis- folded rgp160	$murine(IgG_1\kappa)$			
		& Ho(1993), Bristow (19	02	IIIB:NL43, MicroGenSys					
	 B221: MAbs gen described as 443- 	 B221: Called 221 – bound preferentially to denatured IIIB gp120 –Moore93a B221: MAbs generated in the context of a study of the humoral immune response to rgp120 and rgp160 – boundaries described as 443–462 of LAI –Bristow94 B221: The relative affinity for denatured/native gp120 is 12 – mutation 477 D/V impairs binding –Moore94a 							
	 B221: Called 221 – C2 and V3 substitutions influence binding –Moore94c B221: UK Medical Research Council AIDS reagent: ARP301 								
483 660-178	gp160(471–490)	gp120()	GGGDMRDNWRSELYK KVVK		Env glycopro	murine(IgG)			
	Donor: G. Robey, Abbott Labs References: [Moore (1994c), Moore (1994d)] • 660-178: The relative affinity for denatured/native gp120 is >100 –Moore94a • 660-178: DeltaV1/V2 and DeltaV1/V2/V3 reduce binding – C2 and C5 mutations enhance binding –Moore94c								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
84 8C6/1	gp160(471–490)	gp120()	GGGDMRDNWRSELYKY- KVVK	-	Env glycopro	murine(IgG)				
	References: [Moore • 8C6/1: V5-C5 rebinding –Moore9	 Donor: S. Ranjbar, NIBSC, UK References: [Moore (1994c)] 8C6/1: V5-C5 region – preferentially binds SDS-DTT denatured gp120 (>30 fold) – mutation 485 K/V impairs binding –Moore94a 8C6/1: UK Medical Research Council AIDS reagent: ARP3052 								
485 5F4/1	gp160(471–490)	gp120()	GGGDMRDNWRSELYKY- KVVK	-	Peptide	murine()				
	 Donor: S. Ranjbar, NIBSC, UK References: [Moore (1994c)] 5F4/1: V5-C5 region – preferentially binds SDS-DTT denatured gp120 (>10 fold) – mutation 485 K/V impairs binding –Moore94a 									
36 3F5	gp160(471–490)	gp120()	GGGDMRDNWRSELYKY KVVK	-	Env	murine(IgG)				
	 Donor: S. Nigida, NCI, USA References: [Moore (1994c)] 3F5: The relative affinity for denatured/native gp120 is 100 –Moore94a 									
37 H11	• H11: Binds to gp	gp160(472–477) gp120() GGDMRD murine() References: [Pincus & McClure(1993), Pincus (1996)] • H11: Binds to gp120 but not to infected cells – when linked to ricin A, the immunotoxin did not mediate cell killing – sCD4 has no effect –Pincus93, Pincus96								
88 W2	gp160(472–491)	gp120()	GGDMRDNWRSELYKYK VVKI	-	Env	murine(IgG)				
	References: [Moore	Donor: D. Weiner, U. Penn., USA References: [Moore (1994c)] • W2: The relative affinity for denatured/native gp120 is 30 – mutation 485 K/V impairs binding –Moore94a								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
489 M38	gp160(485–504)	gp120()	KYKVVKEIPLGVAPTKA KRR	- no	IIIB immunization	murine()				
	 M38: Binds to gr nodes –Beretta87 M38: Binds to the homology) –Lopa 	 References: [Beretta (1987), Grassi (1991), Lopalco (1993), DeSantis (1994), Beretta & Dalgleish(1994)] M38: Binds to gp120 and to a 80 kd human protein expressed on a small fraction of mononuclear cells in the lymph nodes –Beretta87 M38: Binds to the carboxy terminus of gp120, in a gp41 binding region, and also to denatured human HLAs (antigenic homology) –Lopalco93 M38: Infected individuals have HLA class I-gp120 cross-reactive antibodies –deSantis94 								
490 42F	 42F: 42F and 43F taken 14 months a for ADCC if the 6 42F: A study of 6 									
491 43F	 42F: 42F and 43F taken 14 months 	· · · · · · · · · · · · · · · · · · ·								
492 RV110026	-	1994c), Moore (1994d)]	IEPLGVAPTK denatured gp120 (15 fold usin	ng R1/87 as captı	Peptide ure reagent) –Moore94a	human(unk)				

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)					
493 110.1	gp160(491–500)	gp120()	IEPLGVAPTK	no	BRU infected cell lysates	$murine(IgG_1\kappa)$					
	Donor: Genetic Systems Corp, Seattle WA, E. Kinney-Thomas Poforopage: [Gesting (1987) Lingley (1988) Kinney Thomas (1988) Bingus (1991) Magra (1994s) Gook (1994)										
	References: [Gosting (1987), Linsley (1988), Kinney Thomas (1988), Pincus (1991), Moore (1994c), Cook (1994), McDougal (1996), Binley (1997a), Valenzuela (1998)]										
	• 110.1: There is another antibody with this ID that binds to gp120, but at aa 200–217 –Pincus96										
		• 110.1: Referred to as 110–1 – does not inhibit CD4-gp120 binding or neutralize HIV-1 strains –Linsley88									
	• 110.1: Difference in the epitope: mapped to aa 421–429 (KQIINMWQE), the T1 sequence – poor efficacy as an immunotoxin when linked to RAC –Pincus91										
	• 110.1: The relative affinity for denatured/native gp120 is 0.7 –Moore94a										
	• 110.1: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells										
	from the brain and colon – MAbs against the carboxy-terminus of gp120 inhibit gp120 binding to GalCer but not as potently as anti-V3 MAbs – binding of GalCer to gp120 does not inhibit MAb binding –Cook94										
		 110.1: Does not neutralize HIV-1 LAI –McDougal96 									
	• 110.1: Does effect	ct LAI viral binding or ent	ry into CEM cells –Valenz	zuela97							
494 GV1G2	gp160(494–499)	gp120()	LGVAPT		gp120 complexed with MAb M77	murine()					
		References: [Denisova (1996)]									
	• GV1G2: When anti-V3 MAb M77 was bound to gp120 and used as an immunogen, it stimulated many MAbs to linear epitopes – MAbs GV12F6 and GV3H1 are homologous to GV1G2 and were generated in the same experiment										
	–Denisova96										

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
95 670-D	 gp160(498–504) gp120() PTKAKRR no HIV-1 infection human(IgG₁λ) References: [Zolla-Pazner (1995), Forthal (1995), Hill (1997), Gorny (1997), Gorny (1998), Nyambi (1998), Altmeyer (1999)] 670-D: Group specific cross-clade binding in serotyping study using flow-cytometry –Zolla-Pazner95 670-D: Not neutralizing, positive ADCC activity, and no viral enhancing activity, numbering provided suggests epitope is RRVVQRE –Forthal95 670-D: gp120 can inhibit MIP-1α from binding to CCR5, but this inhibitory effect is blocked by pre-incubation of gp120 with three anti-V3 MAbs: 447, 257, 1027 – MAb 670 which binds in the C5 region had no effect –Hill97 670-D: Using a whole virion-ELISA method, 18 human MAbs were tested for their ability to bind to a panel of 9 viruses from clades A, B, D, F, G, and H – anti-C5 Abs 670-D and 1331A bound to 3/4 B clade viruses (they didn't bind to IIIB), and to subtype D MAL – 670-D also reacted with subtype A–Nyambi98 670-D: A Semliki Forest virus (SFV) expression system carrying BX08 env was used to study the conformation of gp120 – intracytoplasmic gp120 was recognized by the anti-V3 MAbs K24 and F5.5, while gp120 at the plasma membrane was detected only by conformation dependent MAbs 2G12, 670-D and 694/98D and not V3 MAbs – expression in rat brain also showed that surface-expressed Env was recognized only by the conformation-dependent 								
96 450-D	gp160(498–504) gp120() PTKAKRR (or RRVVQ- no HIV-1 infection? human(IgG RE, or MRDNWRSELYKY depending on reference) Donor: Susan Zolla-Pazner, NYU Med Center, NY, NY References: [Durda (1988), Karwowska (1992a), Karwowska (1992b), Spear (1993), Laal (1994), Gorny (1994), Cook (1994), Forthal (1995), Manca (1995), Li (1997)] 450-D: Bound to MN, SF-2 and IIIB, but was not neutralizing –Karwowska92 450-D: Did not mediate deposition of complement component C3 on HIV infected cells –Spear93 450-D: Not neutralizing alone, could synergize anti-CD4 binding site antibody neutralization –Laal94 450-D: Epitope is defined as PTKAKRR –Gorny94 450-D: MAbs against the glycosphingolipid GalCer block HIV infection of normally susceptible CD4 negative cells from the brain and colon – MAbs against the carboxy-terminus of gp120 do not inhibit gp120 binding to GalCer – binding of GalCer to gp120 does not inhibit MAb binding –Cook94 450-D: No neutralizing activity, no ADCC activity, and no viral enhancing activity –Forthal95 450-D: Virions complexed to gp120 Ab facilitate presentation of p66 RT epitopes to Th cells –Manca95 450-D: One of 14 human MAbs tested for ability to neutralize a chimeric SHIV-vpu+, which expressed HIV-1 IIIB env – 50% neutralization could not be achieved at a maximal concentration of 6 μg/ml –Li97								
97 750-D	gp160(498–504) References: [Forthal (• 750-D: Not neutra	· /-	PTKAKRR ctivity, and no viral e	no nhancing activity –Forthal	HIV-1 infection	human($\operatorname{IgG}_3\lambda$)			

M	Ab ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)	
498 722	22-D		lizing alone, could synerg	RRVVQRE rize anti-CD4 binding site and activity, and no viral enhance	•		human($\operatorname{IgG}_1\kappa$)	
499 pol	olyclonal	• Most HIV-1+ indi	•	RRVVQREKR 7)] response to this epitope – in vaccine recipients –Loomis	•	HIV-1 infection y to RRVVQREKR v	human(unk) was	
500 85	58-D	• 858-D: Group spe	•	VVQREKR [5] In serotyping study using floativity, and no viral enhance			human(IgG)	
501 989	39-D	gp160(505–511) References: [Zolla-Pa • 989-D: In serotyp virus –Zolla-Pazne	ing study using flow-cyto	VVQREKR ometry, showed B clade spe	ecificity, but only re	HIV-1 infection acted with 7/11 B cl	human(IgG)	
502 113	31-A	gp160(505–511) gp120() VVQREKR no HIV-1 infection human(IgG ₃ λ) References: [Bandres (1998)] • 1131-A: A very high affinity antibody used in studies that demonstrate that CXCR4 can bind to gp120 in the absence of CD4-gp120 interactions, and that this binding can be enhanced by Env deglycosylation −Bandres98						
503 5F.	F3	References: [Buchach	gp41(526–543 BH10) nst. Appl. Microbiol., Vie er (1994)] generated by electrofusion	ARQ enna, Austria		HIV-1 infection	human($\operatorname{IgG}_1 \kappa$)	

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
504	25C2	gp160(525–543)	gp41(526–543 BH10)	AAGSTMGAASMTLTVQ- ARQ	no	HIV-1 infection	$\text{human}(\text{Ig} G_1 \kappa)$				
		 Donor: H. Katinger, Inst. Appl. Microbiol., Vienna, Austria and Viral Testing Systems, Houston, TX References: [Buchacher (1992), Buchacher (1994), Sattentau (1995)] 25C2: Human MAb generated by electrofusion of PBL from HIV-1+ volunteers with CB-F7 cells – binds oligomeric and monomeric gp41, and gp160 –Buchacher94 25C2: Called IAM 41-25C2 – Binding domain overlaps sites that are critical for gp120-gp41 association gbf Stbf M – binding is enhanced by sCD4 – binding region defined as: gp41(21-38 BH10) –Sattentau95 									
505	24G3	gp160(525–543)	gp41(526–543 BH10)	AAGSTMGAASMTLTVQ- ARQ	no	HIV-1 infection	$\text{human}(\text{IgG}_1\kappa)$				
		 Donor: H. Katinger, Inst. Appl. Microbiol., Vienna, Austria References: [Buchacher (1992), Buchacher (1994)] 24G3: Human MAb generated by electrofusion of PBL from HIV-1+ volunteers with CB-F7 cells –Buchacher94 									
506	1A1	gp160(525–543)	gp41(526–543 BH10)	AAGSTMGAASMTLTVQ- ARQ	no	HIV-1 infection	$\text{human}(\text{Ig} G_1 \kappa)$				
		References: [Buchach		•	1+ volunteers –	Buchacher94					
507	alpha(566- 586)	gp160(561–581)	gp41(566–586 BRU)	AQQHLLQLTVWGIKQLQ ARIL	-	HIV-1 infection	human(unk)				
	/	References: [Poumbo	urios (1992)]								
508	PC5009	gp160(572–591)	gp41(577–596 BRU)	GIKQLQARILAVERYLK- DQQ		rgp160	murine()				
		References: [Poumbo • PC5009: Recogni	urios (1992)] zed only monomeric gp41 -								
	polyclonal alpha(577- 596)	gp160(572–591)	gp41(577–596 BRU)	GIKQLQARILAVERYLK- DQQ		HIV-1 infection	human plasma()				
	•	References: [Poumbo • a(577-596): Affin	, ,-	asma – preferentially bind olig	gomer –Poumbo	ourios92					

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
510 polyclonal		e human sera were tested a	LQARILAVERYLKDQQL against WT peptide, and pepting $\Gamma - 31$ reacted weakly with particles.						
511 1H5	gp160(578–612)	gp41(579–613 BH10)	ARILAVERYLKDQQLLG- IWGCSGKLICTTAVPWNA		HIV-1 infection	human($\operatorname{Ig} G_1 \kappa$)			
	-	her (1992), Buchacher (1994) by electrofusion of PBL from	4)] n HIV-1 positive volunteers w	rith CB-F7 cells	-Buchacher94				
512 1F11	gp160(578–612)	gp41(579–613 BH10)	ARILAVERYLKDQQLLG- IWGCSGKLICTTAVPWNA		HIV-1 infection	$\text{human}(\text{Ig} G_1 \kappa)$			
	 Donor: H. Katinger, Inst. Appl. Microbiol., Vienna, Austria References: [Buchacher (1992), Buchacher (1994)] 1F11: Generated by electrofusion of PBL from HIV-1 positive volunteers with CB-F7 cells –Buchacher94 								
513 4D4	gp160(578–612)	gp41(579–613 BH10)	ARILAVERYLKDQQLLG- IWGCSGKLICTTAVPWNA		HIV-1 infection	$\text{human}(IgG_1\lambda)$			
	References: [Buchac	ther (1992), Buchacher (1994) by electrofusion of PBL from with the broadest neutralizing that they were raised in an anits – a disulfide linked gp12 ts potential as an immunoger V3 MAbs 19b and 83.1 – \$3-42 and G3-519; nor did it gp41 – MAbs that bind CD4 anti-gp41 MAbs that bind in OSgp140, in contrast to 2F3	ana, Austria and Viral Testing St. 4), Chen (1994b), Sattentau (1 m HIV-1 positive volunteers was activity, IgG ₁ b12, 2G12 and immune response to the oligo-gp41 (SOS gp140) was creat n – SOS gp140 is recognized b SOSgp140 is not recognized b bind C11, 23A, and M90, MA inducible epitopes, 17b and A the region that interacts with 5, which binds to the only gp4	1995), Binley (1995), Binley (1995), Binley (1995), all have had gomer on the valued to mimic the py NAbs IgG1b1 by C4 region Mabs that bind to gas a were very supplied by Table (1995), 7B2, 2.2	Depoy)] -Buchacher94 igh affinity for the natirion surface rather the native conformation 2, 2G12, and CD4-IgC Abs that neutralize or gp120 C1 and C5, who strongly induced by C2B, T4, T15G1 and 4I	an of G2, nly ere D4			

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
514 3D9	gp160(578–612)	gp41(579–613 BH10)	ARILAVERYLKDQQLLG- IWGCSGKLICTTAVPWNA	no	HIV-1 infection	$\text{human}(IgG_1\kappa)$			
	 Donor: H. Katinger, Inst. Appl. Microbiol., Vienna, Austria References: [Buchacher (1992), Buchacher (1994)] 3D9: Generated by electrofusion of PBL from HIV-1 positive volunteers with CB-F7 cells –Buchacher94 								
515 4G2	gp160(578–612)	gp41(579–613 BH10)	ARILAVERYLKDQQLLG- IWGCSGKLICTTAVPWNA	no	HIV-1 infection	human($\operatorname{IgG}_1 \kappa$)			
	Donor: H. Katinger, Inst. Appl. Microbiol., Vienna, Austria References: [Buchacher (1992), Buchacher (1994)] • 4G2: Generated by electrofusion of PBL from HIV-1 positive volunteers with CB-F7 cells –Buchacher94								
516 4B3	gp160(578-612)	gp41(579–613 BH10)	ARILAVERYLKDQQLLG- IWGCSGKLICTTAVPWNA	no	HIV-1 infection	$\text{human}(IgG_1\lambda)$			
	Donor: H. Katinger, Inst. Appl. Microbiol., Vienna, Austria References: [Buchacher (1992), Buchacher (1994), Chen (1994b)] • 4B3: Generated by electrofusion of PBL from HIV-1 positive volunteers with CB-F7 cells –Buchacher94								
517 polyclonal	gp160(579–599)	gp41(583–604)	RILAVERYLKDQQLLGI- WGCS	no	desialylated HIV-1 gp160	rabbit sera()			
	References: [Benjouad (1993)] • MAbs raised against desialylated HIV-1 gp160 cross-react with HIV-2 gp140 due to immunodominant conserved epitope in gp41 –Benjouad93								
518 2A2/26	gp160(579–601)	gp41(584–606 BRU)	RILAVERYLKDQQLLGI- WGCSGK		viral gp41()	murine(IgG)			
	References: [Poumbourios (1992), Poumbourios (1995)] • 2A2/26: Immunodominant region, binds both oligomer and monomer –Poumbourios92 • 2A2/26: Delta 550–561 (Delta LLRAIEAQQHLL), a region important for oligomer formation diminishes binding, Delta (550-561 +571-581) abrogates binding –Poumbourios95								

							HIV Monoclonal Antibod
	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
519	50-69	- ,	Pazner, NYU, NY 89), Pinter (1989), Gorny (19	RILAVERYLKDQQLLGI- WGCSGKLI 989), Xu (1991), Robinson (199	* *	, , , ,	
		Binley (1996), Klasse	& Sattentau(1996), Stamatal with deglycosylated A chareferentially with gp160 oligo-infected cells when coupled pe is affected by the conformation.	Sattentau (1995), Manca (1995) atos (1997), Boots (1997), Mitin of ricin is toxic to lines of Homer, compared to gp41 monod to deglycosylated ricin A chanation conferred by the two cynergizes with huMAb 120–16 binson91	chell (1998)] (IV-infected T comer –Pinter89 ain –Gorny89 esteines at amino	ells (H9) and monocy	ytes (U937) –Till89 –Xu91
		 50-69: Two fold 50-69: Called SZ 50-69: Did not m complement me 50-69: Epitope d MAb 447-52D or 	n93 nfected cells unl –Spear93 t neutralize IIIB	ess cells were pre-in	lization by anti-V3		

- 50-69: One of several anti-gp41 MAbs that bind to a gp41-maltose binding fusion protein designed to study the leucine zipper domain of gp41, showing that the construct has retained aspects of normal gp41 conformation –Chen95
- 50-69: Preferentially binds oligomer binding increased after pretreatment of infected cells with sCD4 binding domain overlaps site that is critical for gp120-gp41 association, avbf Ery –Sattentau95
- 50-69: Virions complexed to gp41 Ab facilitate presentation of p66 RT epitopes to Th cells –Manca95
- 50-69: Does not neutralize HIV-1 LAI –McDougal96
- 50-69: Prebinding of anti-V3, and CD4i MAbs 48d and 17b, but not anti-V2 neutralizing MAbs, expose the 50-69 epitope -Poignard96b
- 50-69: Binds to a linear epitope located in the Cluster I region binding of 50-69 and 240-D inhibited by Fabs A1, A4, M8B, M26B, M12B and T2 -Binley96
- 50-69: Used to test exposure of gp41 upon sCD4 binding –Klasse96
- 50-69: Binding of anti-gp120 MAbs IgG₁b12 or 654-30D does not mediate significant exposure of the gp41 epitopes for MAbs 2F5 and 50-69 -Stamatatos97
- 50-69: Abs that recognize discontinuous epitopes can identify mimotopes from a phage peptide display library 50-69 maps to an immunodominant domain in gp41 – three groups of peptides were selected, one which seems most closely related to gp41 sequence peptide consensus is WGCxx(RK)(x n)LxC - the analogous gp41 sequence WGCSGKLIC is present in most M group clades, except D with a common L to H substitution -Boots97
- 50-69: Mutations in BH10 gp160, W596Y and T605A, as well as deletions of 605-609 (TTAVP) and 597-609 (GCSGKLICT-TAVP), abrogate binding of enhancing MAbs 86, 240D, 50-69, and 246-D - 5/6 enhancing MAbs identified to date bind to the immunodominant region 579-613 - identifies non-contiguous W596-G597-C598...C604-T605 as minimal epitope - Mitchell98
- 50-69: NIH AIDS Research and Reference Reagent Program: 531

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)							
520 98-43	gp160(579–604)	gp41(579–604 HXB2)	RILAVERYLKDQQLLGI- WGCSGKLIC	no	HIV-1 infection	human($\operatorname{IgG}_2\kappa$)							
	References: [Pinter (1989), Gorny (1989), Tyler (1990), Xu (1991)] • 98-43: Reacts equally well with oligomer and monomer –Pinter89 • 98-43: Poor ADCC (in contrast to MAb 120-16, gp41(644-663)) –Tyler90 • 98-43: 579–604 binds in the immunodominant region –Xu91 • 98-43: NIH AIDS Research and Reference Reagent Program: 1241												
521 9-11	gp160(579–604)	gp41(584–609)	RILAVERYLKDQQLLGI- WGCSGKLIC		gp160	$murine(IgG_1)$							
	References: [Mani (1994)] • 9-11: required the C-C disulfide bridge and loop formation, can bind simultaneously with 41–1 –Mani94												
522 Fab A1	gp160(579–608)	gp41(584–609 LAI)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV	no	HIV-1 infection	$\text{human}(\text{IgG}_1\kappa)$							
	References: [Binley (1996)] • Fab A1: Binds to Cluster I region – competes with MAbs 240-D and 50–69 – conformation sensitive – variable regions sequenced –Binley96												
523 Fab A4	gp160(579–608)	gp41(584–609 LAI)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV	no	HIV-1 infection	$human(IgG_1\kappa)$							
	 References: [Binley (1996)] Fab A4: Binds to Cluster I region – competes with MAbs 240-D and 50–69 – conformation sensitive – variable regions sequenced –Binley96 												
524 Fab M8B	gp160(579–608)	gp41(584–609 LAI)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV	no	HIV-1 infection	$\text{human}(IgG_1\kappa)$							
	 References: [Binley (1996)] Fab M8B: Binds to Cluster I region – competes with MAbs 240-D and 50–69 – conformation sensitive – variable regions sequenced –Binley96 												
525 Fab M26B	gp160(579–608)	gp41(584–609 LAI)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV	no	HIV-1 infection	$human(IgG_1\kappa)$							
	• Fab M26B: Bind	s to Cluster I region - compo	etes with MAbs 240-D and 50	–69 – conforma	ntion sensitive – varia	References: [Binley (1996)] • Fab M26B: Binds to Cluster I region – competes with MAbs 240-D and 50–69 – conformation sensitive – variable regions sequenced –Binley96							

	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
526 Fab T2	gp160(579–608)	gp41(584–609 LAI)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV	no	HIV-1 infection	human($\operatorname{IgG}_1 \kappa$)			
	References: [Binley (1996)] • Fab T2: Binds to Cluster I region – competes with MAbs 240-D and 50–69 – conformation sensitive – variable regions sequenced –Binley96								
527 Fab M12B	gp160(579–608)	gp41(584–609 LAI)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV	no	HIV-1 infection	$\text{human}(\text{Ig} G_1 \kappa)$			
	 References: [Binley (1996)] Fab M12B: Binds to Cluster I region – competes with MAbs 240-D and 50–69 – conformation sensitive – variable regions sequenced –Binley96 								
528 41.4	gp160(579–608)	gp41(584–609)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV			()			
	 Donor: Jan McClure, Bristol-Myers Squibb Pharmaceutical Res Inst, Seattle, WA References: [Pincus & McClure(1993)] 41.4: Binds to peptide weakly, but to gp160 with higher affinity than 41.1, and cross-competes with 41.1 – probably conformational – MAb was coupled to ricin A chain (RAC) – sCD4 enhances the efficacy of immunotoxins <i>in vitro</i> 30-fold –Pincus93 								
			, ,	·					
529 41-1	30-fold –Pincus9 gp160(579–608)	gp41(584–609)	RILAVERYLKDQQLLGI- WGCSGKLICTTAV Pincus (1991), Pincus & McC	71 (4000) 15	gp160	$murine(IgG_1\kappa)$			

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
530 86	gp160(579–613)	gp41(586–620 IIIB)	RILAVERYLKDQQLLGI- WGCSGKLICTTAVPWNAS	no	HIV-1 infection	human($\operatorname{IgG}_1\kappa$)				
	Donor: Evan Hersh a	and Yoh-Ichi Matsumoto								
		(1988), Robinson (1990b)), Robinson (1990c), Pincus (19	991), Moran (1	993), Wisnewski (199	96),				
	Mitchell (1998)]									
		 86: Reacts with gp41 and also reacted weakly with gp120 –Sugano88 86: Antibody dependent enhancement (ADE) of HIV-1 IIIB infectivity in the presence of complement –Robinson90a 								
	• 1	*	•	e presence of co	mpiement –Robinson	90a				
	 86: Peptide 586–620 blocks complement mediated ADE –Robinson90b 86: Poor immunotoxin activity when coupled to RAC – peptide binding stated to be aa 579–603 –Pincus91 									
	• 86: Heavy (V HI) and light (V kappaI) chain sequenced – enhancing activity – similar germline sequence to MAb									
	S1-1, but very different activity – Moran93									
	 86: 86 is V H1 – V-region heavy chain usage was examined and a bias of enhanced V H1 and V H4, and reduced V 									
		nong HIV infected individu								
	• 86: Mutations in BH10 gp160, W596Y and T605A, as well as deletions of 605–609 (TTAVP) and 597–609 (GCS-									
	GKLICTTAVP), abrogate binding of enhancing MAbs 86, 240D, 50-69, and 246-D – 5/6 enhancing MAbs identifit to date bind to the immunodominant region 579–613 –Mitchell98 • 86: NIH AIDS Research and Reference Reagent Program: 380									
531 polyclonal	gp160(580–597)	gp41(584–602)	ILAVERYLKDQQLLGIWG	no	HIV-1 infection	human sera()				
	References: [Petrov ((1990)] t and broadly reactive pept:	ida Patrovi00							
	• Illilliullodollilliali	t and broadly reactive pept.	ide – Fetiov 90							
532 V10-9	gp160(580-613)	41/596 (20 HID)								
JJ2 V 10-7	gp100(360–013)	gp41(586–620 IIIB)	ILAVERYLKDQQLLGIW-	no	HIV-1 infection	$\text{human}(\text{IgG}_1\kappa)$				
JJ2 V 10-9			GCSGKLICTTAVPWNAS	no	HIV-1 infection	$human(IgG_1\kappa)$				
332 ¥ 10-7	References: [Robinson	on (1990b), Robinson (199	GCSGKLICTTAVPWNAS (0c)]			, 0 - 7				
332 V10-7	References: [Robinson V10-9: Antibody	on (1990b), Robinson (199	GCSGKLICTTAVPWNAS			, 0 - 7				
552 ¥10-7	References: [Robinson V10-9: Antibody –Robinson 90a	on (1990b), Robinson (1990b), Robinson (1990b)	GCSGKLICTTAVPWNAS Oc)] ADE) of HIV-1 IIIB infectivity, s	synergistically e		, ,				
JJZ V10-7	References: [Robinson V10-9: Antibody –Robinson 90a	on (1990b), Robinson (1990b), Robinson (1990b)	GCSGKLICTTAVPWNAS (0c)]	synergistically e		, ,				
533 polyclonal	References: [Robinson V10-9: Antibody –Robinson 90a	on (1990b), Robinson (1990b), Robinson (1990b)	GCSGKLICTTAVPWNAS Oc)] ADE) of HIV-1 IIIB infectivity, s	synergistically e		, 0 - 7				
	References: [Robinson V10-9: Antibody –Robinson 90a • V10-9: Peptide 5 gp160(582–589) References: [Klasse of the content of th	on (1990b), Robinson (1990b) dependent enhancement (A 886–620 blocks complemen gp41(589–596) (1991)]	GCSGKLICTTAVPWNAS [0c)] [ADE] of HIV-1 IIIB infectivity, s t mediated ADE –Robinson90b AVERYLKD	synergistically e b	nhanced by MAb 120 HIV-1 infection	human sera()				
	References: [Robinson V10-9: Antibody – Robinson 90a • V10-9: Peptide 5 gp160(582–589) References: [Klasse e	on (1990b), Robinson (1990b) dependent enhancement (A 886–620 blocks complemen gp41(589–596) (1991)]	GCSGKLICTTAVPWNAS [0c)] [ADE] of HIV-1 IIIB infectivity, so t mediated ADE –Robinson90b AVERYLKD [599] were systematically studied	synergistically e b	nhanced by MAb 120 HIV-1 infection	human sera()				

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)		
534 polyclonal	gp160(584–604)	gp41()	ERYLKDQLLGIWGCSC LIC	GK-	HIV-1 infection	human sera()		
	References: [Shafferman (1989)] • Immunogenic domain useful for diagnostics –Shafferman89							
535 2F11	gp160(589–600) References: [Eaton (gp41() [994)] nfectivity even in the absence	DQQLLGIWGCSG e of complement – does not r	no nediate ADCC or n	HIV-1 infection eutralize virus –Eator	$\begin{array}{c} \text{human}(IgG_1) \\ \\ \text{n94} \end{array}$		
536 246-D	References: [Xu (19 (1995), Earl (1997)] • 246-D: Fine mapp • 246-D: Did not more with sCD4 – Speate (1995) • 246-D: No neutrate (1996) • 246-D: Virions core (1996) • 246-D: Ab-mediate (1996) • 246-D: Mutations (GCSGKLICTTATE (1996) • 246-D: This antible	gp41(579–604 HXB2) Pazner, NYU Med Center, N 91), Robinson (1991), Spea bing indicates core is LLGI ediate deposition of complem r93 lizing activity, some enhance r-246.D –Eddleston93 lizing activity, both ADCC omplexed to gp41 Ab facilita ted activation of compleme independent" in fact results is in BH10 gp160, W596Y VP), abrogate binding of end bind to the immunodominar body, along with murine MA T4, T6, T9, T10 and T35) –	Ary, NY Ar (1993), Eddleston (1993) -Xu91 Thent component C3 on HIV in the case of the component C3 on HIV in the case of the component C3 on HIV in the case of the case	Forthal95 epitopes to Th cells than Ab independent human serum the etions of 605–609 50-69, and 246-D	s –Manca95 ent activation – what is HIV-cross-react (TTAVP) and 597–6 – 5/6 enhancing MA	has ive 509 Abs		
537 9G5A	gp160(591–594) References: [Lopalco	gp41(596–599 IIIB) o (1993), Beretta & Dalgleis ype to gp120 C terminus (C	QLLG h(1994)]	lco93	Anti-idiotype against M38	murine(IgM)		

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
538 181-D	181-D: Fine mapp181-D: No enhand181-D: Called SZ	gp41(591–597 HXB2) ol), Robinson (1991), Eddles oing indicates core is LLGIV cing or neutralization activit -181.D –Eddleston93 lizing, no ADCC, and no vin	ston (1993), Forthal W –Xu91 ty –Robinson91		HIV-1 infection	human($\operatorname{IgG}_2\kappa$)			
539 240-D	 (1998)] 240-D: Fine mapp 240-D: No neutra 240-D: Did not m 240-D: Binds to a A4, M8B, M26B, 240-D: Called F2 H4, and reduced V 240-D: Mutations (GCSGKLICTTA) 	References: [Xu (1991), Robinson (1991), Spear (1993), Binley (1996), Wisnewski (1995), Wisnewski (1996), Mitchell (1998)] • 240-D: Fine mapping indicates core is IWG –Xu91 • 240-D: No neutralizing activity, some enhancing activity –Robinson91 • 240-D: Did not mediate deposition of complement component C3 on HIV infected cells –Spear93 • 240-D: Binds to a linear epitope located in the Cluster I region – binding of 50–69 and 240-D inhibited by Fabs A1, A4, M8B, M26B, M12B and T2 –Binley96 • 240-D: Called F240: F240 in V H3 – V-region heavy chain usage was examined and a bias of enhanced V H1 and V H4, and reduced V H3, was noted among HIV infected individuals –Wisnewski96 • 240-D: Mutations in BH10 gp160, W596Y and T605A, as well as deletions of 605–609 (TTAVP) and 597–609 (GCSGKLICTTAVP), abrogate binding of enhancing MAbs 86, 240D, 50-69, and 246-D – 5/6 enhancing MAbs identified to date bind to the immunodominant region 579–613 –Mitchell98							
540 F240	• F240: Seems to b gp41 – dose-depe activity and enhancells with sCD4 of	e distinct from MAb 240-D ndent reactivity with HIV isonces infection in the presence or anti-CD4BS MAb F105 – MAb 3D6 was observed, as	Harvard Med. Schoon, an antibody with a colates RF, SF2, IIIB, the of complement – respectively and light characteristics.	ol, Boston MA, USA similar epitope in the imr and MN was observed – F eactivity of F240 is enhand in variable domains were	F240 had no neutralizaced by preincubation sequenced, and a stro	ing of ong			

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
541	D61	 D61: Linear gp4 extent for gp41 M D61: Does not p two cysteines – the fusion state of th D61: Binding maresidues – this and page 1 	994), Richardson Jr (1996), 1 epitope in the cluster I region MAbs D20, D43, D61, and Torecipitate gp41(21-166), but he authors propose that this re HIV-1 glycoprotein –Weist aps to region 597-613: WG0 attibody, along with human M, T4, T6, T9, T10 and T35)	on – human sera blocked b C4 –Richardson96 t due to a structural differegion may change confortsenhorn96 CSGKLICTTAVPWNA – IAb 246-D, can be blocke	l (1997)] pinding in oligomeric prence in the disulfide rmation during the act immunodominant read by any of a group of	bonding region near the ivation of the membrane gion containing two Cys 8 conformational MAbs	
542	D49	gp160(592–608) References: [Earl (190) • D49: Binding markers residues –Earl97	aps to region 597-613: WG	LLGIWGCSGKLICT		dimeric Env	murine()
543	T32	gp160(592–608) References: [Earl (197) • T32: Binding maresidues –Earl97	aps to region 597-613: WGC	LLGIWGCSGKLICT		tetrameric Env	murine()
544	T34	gp160(592–608) References: [Earl (197) • T34: Binding maresidues –Earl97	aps to region 597-613: WGO	LLGIWGCSGKLICT		tetrameric Env	murine()
545	115.8	gp160(593–604)	gp41(598–609)	LGLIWGCSGKLIC		peptide LGLIWGC- SGKLIC (aa 598- 609)	murine(IgM)
			ne (1991)] activity with CSGKLIC – r sulfide bond between cysteir		HIV-2 peptide NSWC	GCAFRQVC as well as	3

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
546 M-22	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	murine(IgG _{2b})			
	References: [Yamada • M-22: Strongest r -Yamada91	· /-	gp41 MAbs to a cellular 43	-kDa protein found in	n rat and human astrocyte	es			
547 M-24	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	$murine(IgG_1)$			
	References: [Yamada (1991)] • M-24: Strongly reacted with a cellular 43-kDa protein found in rat and human astrocytes as well as with gp41 -Yamada91								
548 M-28	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	$murine(IgG_1) \\$			
	References: [Yamada • M-28: Strongly 1 -Yamada91		I3-kDa protein found in ra	t and human astrocy	rtes as well as with gp4	1			
549 M-2	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	$murine(IgG_{2b})$			
	References: [Yamada (1991)] • M-2: Strongly reacted with a cellular 43-kDa protein found in rat and human astrocytes as well as with gp41 —Yamada91								
550 M-11	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	$murine(IgG_1)$			
	References: [Yamada (1991)] • M-11: Strongly reacted with a cellular 43-kDa protein found in rat and human astrocytes as well as with gp41 —Yamada91								
551 M-13	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	$murine(IgG_{2b})$			
	_	References: [Yamada (1991)] • M-13: Reacted with a cellular 43-kDa protein found in rat and human astrocytes as well as with gp41 – Yamada 91							
552 M-25	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	murine(IgG ₁)			
	References: [Yamada • M-25: Reacted w		tein found in rat and human	n astrocytes as well a	s with gp41 –Yamada91				

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
553	M-1	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	murine(IgG ₁ or2b)				
		_	References: [Yamada (1991)] • M-1: Unlike M-22, did not react to 43-kDa protein found in rat and human astrocytes –Yamada91								
554 M-	M-4	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	$murine(IgG_{2b})$				
		References: [Yamada (1991)] • M-4: Unlike M-22, did not react to 43-kDa protein found in rat and human astrocytes –Yamada91									
555	M-6	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	murine(IgG _{2b})				
		References: [Yamada • M-6: Unlike M-2	a (1991)] 22, did not react to 43-kDa p	rotein found in rat and hu	ıman astrocytes –Yan						
556	M-29	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	murine(IgG ₁)				
		References: [Yamada • M-29: Unlike M	a (1991)] -22, did not react to 43-kDa	protein found in rat and h	numan astrocytes –Ya						
557	M-36	gp160(593–604)	gp41(598–609)	LGIWGCSGKLIC		HIV-1 gp41 peptide (aa 598-609)	murine(IgG ₁)				
		References: [Yamada • M-36: Unlike M	a (1991)] -22, did not react to 43-kDa	protein found in rat and h	numan astrocytes –Ya						
558	polyclonal alpha(598- 609)	gp160(594–601)	gp41(598–609)	GIWGCSGK		HIV-1 infection	human(unk)				
	002)	References: [Poumbourios (1992)] • alpha(598-609): Affinity purified from HIV-1+ plasma – immunodominant region, binds oligomer and monomer —Poumbourios92									
559	1B8.env	gp160(594–604) References: [Banapo	gp41(594–605 HXB2) our (1987)] conserved epitope recognize		no V-1 infected people –F	HIV-1 infection Banapour87	$\text{human}(\text{IgG}_2\lambda)$				

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
560 polyclonal	gp160(594–609) References: [Petrov (• Immunodominant	gp41(601–616) 1990)] and broadly reactive pe	GIWGCSGKLICTTAVP ptide –Petrov90	no	HIV-1 infection	human sera()
561 clone 3	• clone 3: Core bind in infants (–Brolid	den89) –Cotropia92	GCSGKLICTT)] lack of serological activity to the HIV-1 laboratory strains, as well as the service of the servi	<u> </u>	1 1 0	
562 41-6		reactivity with HIV-2 pe	CSGKLIC		peptide LGLIWGC- SGKLIC (aa 598- 609) LGLIWGCSGKLIC ar	murine(IgG_{2b})
563 4	gp160(598–604)	gp41(598–609)	e bond between cysteines requ CSGKLIC	ned –Oldstolle91	peptide LGLIWGC- SGKLIC (aa 598- 609)	murine(IgG _{2b})
		er MAb with this ID that ctivity with HIV-2 peptid	reacts with integrase –Oldstor e CAFRQVC – slightly more		er94) -
564 75	gp160(598–604)	gp41(598–609)	CSGKLIC		peptide LGLIWGC- SGKLIC (aa 598- 609)	rat(IgG)
	References: [Oldston • 75: Poor cross-re CAFRQVC –Olds	eactivity with HIV-2 pe	eptide CAFRQVC – more rea	active with longe	,	j-
565 68.1	gp160(598–604)	gp41(598–609)	CSGKLIC		peptide LGLIWGC- SGKLIC (aa 598- 609)	murine(IgM)
		· -	AFRQVC – more reactive with	n longer HIV-1 pe	,	C

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
566 68.11	gp160(598–604)	gp41(598–609)	CSGKLIC		peptide LGLIWGC- SGKLIC (aa 598- 609)	murine(IgM)
		ne (1991)] ctive with HIV-2 peptide CA le NSWGCAFRQVC –Old:		ive with longer HIV-1 pep	tide LGLIWGCSGKLIC	<u>'</u>
567 41-7	gp160(598–604) References: [Bugge et al. 7: Sera from et al. 7:	gp41(605–611) (1990)] 6/6 HIV-1 positive, but no I	CSGKLIC HIV-2 positive, indivi	no duals interfered with 41–7	HIV-1 infection binding –Bugge90	$\text{human}(\text{Ig} G_1 \kappa)$
568 3D6	References: [Felgen Cavacini (1998b), Car	of cDNA encoding V- region ent crystal structure –He92 binds to HIV gp41, and to	chen (1994b), Satte Chen (1994b), Satte Ins –Felgenhauer90 a 43 kd protein found ased after pretreatment association, cttabf V – sage was examined artiduals –Wisnewski96 as sequenced – in contact logies of 97-98% relation of gp41 – a strong	I Testing Systems, Houston that (1995), Wisnewski in human T, B and monotoned of infected cells with substitute the sequences of five the trust the sequences of the trust the trust the sequences of the trust the	ocyte cell lines, proposed sCD4 – binding domain 1 and V H4, and reduced neutralizing MAbs, 3D6 funert98	
569 D50	 D50: Thought to D5, D11, G1, T3 D50: Richardson D50: Found to b dependent MAbs cluster two region 	gp41(642–665) 994), Binley (1996), Richar be a discontinuous epitopo M12, M15, S6, S8, S9, S1 suggests this is a linear gp bind to a linear peptide, bet D16, D17, D31, D36, D37 n – reactive with 9/10 HIV- lt in the loss of binding (EL	e recognizing residue 10 block binding —Bin 41 epitope —Richards ween env amino acid , D40, D44, D55, D59 1 strains tested, all ex	s between 649–668 – des ley96 on96 s 642–655 – can be blocl y, T37, and T45 – the regio cept HIV-1 ADA, in whic	ked by the conformation on is in the immunogenic	1

	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
70 120-16	gp160(644–663)	gp41(644–663 HXB2)	SLIEESQNQQEKNEQEL- LEL	no	HIV-1 infection	$\text{human}(IgG_2\kappa)$
	(1995), Wisnewski (1	y dependent enhancement (A.DCC (in contrast to MAb 98 ctive region than AVERY reglinear one –Xu91 tes with huMAb 50–69 in vit Z-120.16 –Eddleston93 ralizing activity, both ADCC is V H4 – V-region heavy ch	Tyler (1990), Xu (1991), Robi DE) of HIV-1 IIIB infectivity, s 3-43, gp41(579-604)) –Tyler90 gion – most Abs involving this ro to enhance HIV-1 infection and viral enhancing activity – ain usage was examined and a	synergistically e s region bound c -Robinson91 Forthal95	nhanced by MAb V10- conformational epitope	9 s,
		as noted among HIV infected				
71 98-6	gp160(644–663)	gp41(644–663 HXB2)	SLIEESQNQQEKNEQEL- LEL	no	HIV-1 infection	$human(IgG_2\kappa)$
	Moore(1991), Robins Forthal (1995), Manc • 98-6: Reacts pres • 98-6: Kills HIV-s • 98-6: Toxic to H —Till89	son (1991), Xu (1991), Eddl a (1995), Sattentau (1995), We ferentially with gp160 oligon infected cells when coupled to IV-infected T cells (H9) and dizing or enhancing activity for		Tani (1994), Laa 198)] ner –Pinter89 n –Gorny89	al (1994), Chen (1995),

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizi	ng Immunogen	Species(Isotype)
98-6 cont.	by anti-V3 MAb 98-6: One of several per domain of the several per dom	escribed as Cluster II, 644-447-52D or by CD4 BS Meral anti-gp41 MAbs that be gp41, showing that the cizing activity, positive AE izing activi	MAbs –Laal94 bind to a gp41-maltos onstruct has retained OCC activity, and no itate presentation of p c form of gp41 – enhances binding –Sat n usage was examined ividuals –Wisnewskig od, 18 human MAbs anti-gp41 Abs 98-6, pi98	se binding fusion protein aspects of normal gp4 viral enhancing activity o66 RT epitopes to The nanced binding to HIV-tentau95 and a bias of enhanced were tested for their a 1367 and 1342 were no	n designed to study the 1 conformation –Chen y –Forthal95 cells –Manca95 -1 infected cells at 37 d V H1 and V H4, and a ability to bind to a par	leucine 95 degrees reduced nel of 9
572 167-7	167-7: Specific f167-7: Called SZ	gp41(644–663) 91), Eddleston (1993)] For a conformational epito Z-167.7 – binds to a confo		-	HIV-1 infection 41, and reacts with ast	human($\operatorname{IgG}_2\lambda$)
573 ND-15G1	gp160(644–663) References: [Eddles ND-15G1: Map 167–7 –Eddlesto	ped to the conformational	LEL		HIV-1 infection th astrocytes, as do 98	human($\operatorname{IgG}_1\kappa$) 3–6 and
574 167-D	167-D: Did not virolysis of MN167-D: No neutr	gp41(644–663 HXB2 (1993), Forthal (1995), Ma mediate deposition of cor and IIIB in the presence of alizing activity, no ADCC omplexed to gp41 Ab fac	LEL anca (1995)] mplement componen of sCD4 –Spear93 C activity, and no vira	t C3 on HIV infected l enhancing activity –F	orthal95	human($\operatorname{IgG}_1\lambda$) nediated

MAb ID **HXB2** Location Author's Location Sequence **Neutralizing Immunogen** Species(Isotype) LP 575 2F5 gp160(662–667) gp41(662-667 BH10) ELDKWA HIV-1 infection human($IgG_3\kappa$) Donor: Hermann Katinger, U. of Bodenkultur, or Polymun Scientific Inc., Vienna, Austria, or Viral Testing Systems Corp., Houson TX **References:** [Buchacher (1992), Muster (1993), Allaway (1993), Klasse (1993a), Purtscher (1994), Laal (1994), Buchacher (1994), D'Souza (1994), Conley (1994b), Thali (1994), Chen (1994b), Muster (1994), Beretta & Dalgleish(1994), D'Souza (1995), Trkola (1995), Sattentau (1995), Moore & Ho(1995), Neurath (1995), Kessler (1995), Calarota (1996), McKeating (1996), Poignard (1996b), Sattentau (1996), Conley (1996), Pincus (1996), McKeating (1996), Stoiber (1996), Purtscher (1996), Schutten (1997), D'Souza (1997), Mo (1997), Li (1997), Kessler II (1997), Moore & Trkola(1997), Mascola (1997), Stamatatos (1997), Turbica (1997), Ugolini (1997), Burton & Montefiori(1997), Earl (1997), Gorny (1997), Andrus (1998), Mondor (1998), Connor (1998), Parren (1998a), Yang (1998), Trkola (1998), Fouts (1998), Ernst (1998), Takefman (1998), Li (1998), Jiang (1998), Parren (1998b), Geffin (1998), Kunert (1998), Frankel (1998), Montefiori & Evans(1999), Poignard (1999), Beddows (1999)] 2F5: DKWA defined as the core sequence – highly conserved epitope neutralizing MAb –Buchacher92, Muster93 2F5: Synergy with combinations of CD4-based molecules in inhibition of HIV-1 Env mediated cell fusion – Allaway93 • 2F5: Called IAM-41-2F5 – reports MAb to be IgG 1 – the gp41 mutation 582(Ala to Thr) results in conformational changes in gp120 that confer neutralization resistance to conformationally sensitive neutralizing MAbs – neutralization efficiency of 2F5 is not affected -Klasse93b • 2F5: Broadly reactive neutralizing activity, ELDKWA is relatively conserved - neutralized 2 primary isolates -Purtscher94 2F5: Failed to show synergy with anti-CD4 binding site IIIB neutralizing antibodies –Laal94 • 2F5: MAb generated by electrofusion of PBL from HIV-1 positive volunteers with CB-F7 cells –Buchacher94 • 2F5: Included in a multi-lab study for antibody characterization binding and neutralization assay comparison – D'Souza94 • 2F5: Called IAM-41-2F5 – neutralized lab and primary isolates $-t_{1/2}$ dissociation 122 min for the peptide, and 156 min for gp41 – core D(K/R)W – Ab resistant isolate had the sequence KLDNWA –Conley94a • 2F5: gp41 mutation (582 A/T) that reduces neutralization of anti-CD4 binding site MAbs does not alter 2F5's ability to neutralize -Thali94 2F5: 2F5 epitope ELDKWA inserted into an immunogenic loop in influenza virus hemagglutinin can elicit IIIB, MN and RF neutralizing sera in immunized mice -Muster94 • 2F5: Found to neutralize MN, JRCSF, and two B subtype primary isolates, but not a D subtype primary isolate, by most labs in a multi-laboratory study involving 11 labs -D'Souza95 2F5: Cross-clade primary virus neutralizing activity – LDKW defined as the core epitope –Trkola95a • 2F5: Called IAM 41-2F5 – exposed in the presence of gp120 on the cell surface, while most of gp41 is masked – binds proximal to transmembrane region –Sattentau95

• 2F5: Review: binds to the only generally accepted strong neutralizing epitope outside of gp120, one of only 3 MAbs with strong broad activity against primary viruses, the others are 2G12 and IgG₁b12 – unique member of epitope

cluster -Moore95c and John Moore, per comm 1996

- 2F5: MAb binding decreases the accessibility or alters the conformation of the gp41 fusion domain and of gp120 domains, including the binding site for the CD4 cell receptor –Neurath95
- 2F5: Broad cross-clade neutralization of primary isolates additive neutralization in combination with anti-CD4BS MAb IgG₁b12 (Called BM12) –Kessler95
- 2F5: Only 4/20 Argentinian and 3/43 Swedish HIV+ sera reacted with LLELDKWASL sera reacting with peptides
 that contained ELDKWA tended to have high neutralization titers the region carboxyl terminal to EDLKWA was
 found to be more important for polyclonal sera AB binding, 670–675 WNWFDI 2F5 bound most strongly to the
 peptide QELLELDKWA –Calarota96
- 2F5: ELDKWAS is in a gp41 binding region for the negative regulator of complement factor H (CFH) Abs to
 HIV generally do not cause efficient complement-mediated lysis, but binding of 2F5 can interfere with CHF binding,
 facilitating HIV destruction by complement –Stoiber96
- 2F5: Primary isolates from clade A, B, and E are neutralized by 2F5 neutralization requires the LDKW motif neutralization resistant isolates or 2F5 selected variants all had substitutions in the D or K –Purtscher96
- 2F5: Neutralizes HXB2, primary isolates, and chimeric virus with gp120 from primary isolates in an HXB2 background –McKeating96b
- 2F5: Review: one of three MAbs (IgG₁b12, 2G12, and 2F5) generally accepted as having significant potency against primary isolates –Poignard96
- 2F5: Review: only four epitopes have been described which can stimulate a useful neutralizing response to a broad spectrum of primary isolates, represented by the binding sites of MAbs: 447-52-D, 2G12, Fab b12, and 2F5 —Sattentau96
- 2F5: 2F5 was infused into two chimpanzees which were then given an intravenous challenge with a primary HIV-1 isolate both became infected, but with delayed detection and prolonged decrease in viral load relative to controls, indicating that preexisting, neutralizing antibodies (passively administered or actively elicited) affect the course of acute-phase virus replication and can be influential after the Ab can no longer be detected in the peripheral circulation –Conley96
- 2F5: A panel of immunotoxins were generated by linking Env MAbs to ricin A immunotoxins mediated cell killing, but killing was not directly proportional to binding –Pincus96
- 2F5: Called IAM 2F5 antibody mediated enhancement or inhibition seemed to be determined by isolate rather than antibody specificity in this study, only 2F5 inhibited the entry of all the viruses studied, irrespective of their phenotype, and directly proportional to its affinity to monomeric HIV-1 gp160 Schutten 97
- 2F5: Of three neutralizing MAbs (257-D, IgG₁b12, and 2F5), 2F5 was the only one to inhibit the entry of all viruses studied, both SI and NSI, with a potency proportional to its affinity for monomeric gp126 –Schutten97

- 2F5: In a multilab evaluation of monoclonal antibodies, only IgG₁b12, 2G12, and 2F5 could neutralize at least half of the 9 primary test isolates at a concentration of < 25 mug per ml for 90% viral inhibition the isolates with no 2F5 neutralizing susceptibility had the sequences ALGQWA or ELDTWA instead of EDLKWA 7/9 primary isolates were neutralized, and ALDKWQ and ALDKWA were susceptible to neutralization –D'Souza97
- 2F5: A JRCSF variant that was selected for IgG₁b12 resistance remained sensitive to MAbs 2G12 and 2F5, for combination therapy –Mo97
- 2F5: One of 14 human MAbs tested for ability to neutralize a chimeric SHIV-vpu+, which expressed HIV-1 IIIB env strong neutralizer of SHIV-vpu+ all Ab combinations tested showed synergistic neutralization 2F5 has synergistic response with MAbs 694/98-D (anti-V3), 2G12, b12, and F105 –Li97
- 2F5: IgG₁b12 was more potent with greater breadth than MAb 2F5 in an infection reduction assay including 35 primary isolates –Kessler97
- 2F5: Review: MABs 2F5, 2G12 and IgG₁b12 have potential for use in combination with CD4-IgG2 as an immunotherapeutic or immunoprophylactic homologous MAbs to these are rare in humans and vaccine strategies should consider including constructs that may enhance exposure of these MAbs' epitopes –Moore97
- 2F5: Binding of anti-gp120 MAbs IgG₁b12 or 654-30D does not mediate significant exposure of the gp41 epitopes for MAbs 2F5 and 50–69 –Stamatatos97
- 2F5: Using concentrations of Abs achievable *in vivo*, the triple combination of 2F5, 2G12 and HIVIG was found to be synergistic to have the greatest breadth and magnitude of response against 15 clade B primary isolates –Mascola97
- 2F5: Used to standardize polyclonal response to CD4 BS –Turbica97
- 2F5: The only MAb out of a large panel to show no correlation between Viral binding inhibition and neutralization
 –Ugolini97
- 2F5: This review summarizes results about 2F5: it binds extracellularly, near the transmembrane domain, it is the only gp41 MAb that is neutralizing, it reacts with many non-B clade viruses and has a paradoxically weak binding to virus, given the neutralizing titers –Burton97
- 2F5: Post-exposure prophylaxis was effective when MAb 694/98-D was delivered 15 min post-exposure to HIV-1 LAI in hu-PBL-SCID mice, but declined to 50% if delivered 60 min post-exposure, and similar time constraints have been observed for HIVIG, 2F5 and 2G12, in contrast to MAb BAT123 that could protect delivered 4 hours post infection –Andrus98
- 2F5: This MAb and the results of –Ugolini97 are discussed the authors propose that an Ab bound to gp41 would typically project less from the surface of the virion and so be unable to interfere with attachment –Parren98
- 2F5: Ab from gp120 vaccinated individuals prior to infection, who subsequently became HIV infected, could not achieve 90% neutralization of the primary virus by which the individuals were ultimately infected these viruses were not particularly refractive to neutralization, as determined by their susceptibility to neutralization by MAbs 2G12, IgG₁b12, 2F5 and 447-52D –Connor98

- 2F5: A neutralization assay was developed based on hemi-nested PCR amplification of the LTR (HNPCR) LTR-HNPCR consistently revealed HIV DNA and was shown to be a rapid, specific and reliable neutralization assay based on tests with 6 MAbs and 5 isolates Yang 98
- 2F5: A wide range of neutralizing titers was observed that was independent of co-receptor usage 2F5 was the most potent of the MAbs tested –Trkola98
- 2F5: Points out that 2G12 and 2F5, potent neutralizing antibodies, were identified by screening for cell surface (oligomeric envelope) reactivity –Fouts98
- 2F5: The ELDKWA epitope was inserted into the antigenic site B of influenza hemagglutinin and expressed on baculovirus infected insect cells, flanked by 3 additional random amino acids, xELDKWAxx – FACS was used to isolate the clone that displayed the epitope with the most markedly increased binding capacity for 2F5, to identify particularly specific immunogenic constructs – PELDKWAPP was a high affinity form selected by FACS –Ernst98
- 2F5: Induces complement-mediated lysis in MN but not primary isolates primary isolates are refractive to CML

 —Takefman98
- 2F5: Neutralization synergy was observed when the MAbs 694/98-D (V3), 2F5 (gp41), and 2G12 (gp120 discontinuous) were used in combination, and even greater neutralizing potential was seen with the addition of a fourth MAb, F105 (CD4 BS) –Li98
- 2F5: Used as a control in the study of anti-gp41 MAb NC-1 2F5 does not react with HIV-2 gp41 or gp160 Jiang98
- 2F5: MAbs 2G12, 2F5 and b12 are broadly neutralizing, as are some human polyconal sera, but this paper describes a set of primary isolates that are resistant to all three MAbs and 2 broadly neutralizing sera results indicate that resistance levels of pediatric isolates might be higher than adult isolates resistance in general did not seem to be conferred by a loss of binding affinity for gp120 or gp41, rather by a more global perturbation of oligomeric Envelope –Parren98a
- 2F5: The natural immune response to the epitope of 2F5, ELDKWA, was studied in perinatally infected children and levels of reactivity to this epitope were correlated with absolute CD4 numbers over time and health status 3/10 children who had no antibody reactivity to ELDKWA had substitutions in the epitope (ALDKWA, ELDQWA, and KLDKWA) 2F5 competed with the ELDKWA-reactive sera depending on the serum titer –Geffin98

- 2F5: The complete V, J and D(H) domain was sequenced unlike non-neutralizing anti-gp41 MAb 3D6, five neutralizing MAbs (2F5, 2G12, 1B1, 1F7, and 3D5) showed extensive somatic mutations giving evidence of persistent antigenic pressure over long periods in contrast to Geffin98, where multiple pediatric sera were found to compete with 2F5, cross-competition was noted to be very rare in sera from HIV+ adults Kunert *et al.* propose that because there is a binding site of human complement factor H which overlaps the 2F5 binding site, it may generally be masked from the immune system 2F5 also has a remarkably long CDR3 loop of 22 amino acids, and this region could not be readily assigned to any described D(H) fragment, leading to the suggestion of recombination of two fragments from novel regions –Kunert98
- 2F5: Prevention of the initial infection of mucosal dendritic cells is a desirable attributes of anti-HIV-1 vaccine stimulated Abs IgG₁b12 and a combination of 2F5 and 2G12 could neutralize viral entry into DCs –Frankel98
- 2F5: rgp120 derived from a R5X4 subtype B virus was used to vaccinate healthy volunteers and the resulting sera were compared with sera from HIV-1 positive subjects and neutralizing MAbs –Beddows99
- 2F5: A meeting summary presented results regarding neutralization –MAbs 2G12 and 2F5 tested for their ability to neutralize primary isolate infection of genetically engineered cell lines (cMAGI and others, presented by T. Matthews, A. Trkola, J. Bradac) an advantage of such cells lines over PBMCs is that markers (X-Gal) can be added for staining to simplify the assay the consensus of the meeting was that these engineered cell lines did not improve the sensitivity of detection of primary isolate neutralization D. Burton and J. Mascola presented results concerning passive immunization and protection of hu-PBL-SCID mice and macaques, respectively, and both found combinations of MAbs that were able to achieve 99% neutralization *in vitro* corresponded to efficacy *in vivo* –Montefiori99
- 2F5: Hu-PBL-SCID mice were infected with HIV-1s JRCSF and SF162 to study the effect of NAbs on an established infection no significant differences in the initial rate of decrease in viral load or the plateau levels of viral RNA between the b12 treated and control mice were seen in most of the Ab treated mice b12 escape mutants were observed with varying patterns of mutations a combination of b12, 2G12 and 2F5 protected 1/3 mice, and an isolate from one of the other two was resistant to neutralization by all three MAbs –Poignard99
- 2F5: UK Medical Research Council AIDS reagent: ARP3063
- 2F5: NIH AIDS Research and Reference Reagent Program: 1475

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
576 polyclonal	gp160(662–667)	gp41(662–667 BH10)	ELDKWA	L	chimeric influenza virus/ELDKWA	murine(IgG,IgA)			
	_	(1994), Muster (1995)] WA specific IgA response in	n mucosa of immunized mice	-Muster95					
577 B30	gp160(720–734)	gp41(720–734 BH10)	HLPIPRGPDRPEGIE		mis-folded LAI rgp160	$murine(IgG_1) \\$			
	Donor: Gearoge Lewis								
	References: [Abacios B30: Epitope box	glu (1994)] undaries mapped by peptide	scanning –Abacioglu94						
578 polyclonal	gp160(724–745)	gp41(731–752 IIIB)	PRGPDRPEGIEEEGGER- DRDRS		gp41 peptide ex- pressed in chimeric cowpea mosaic virus	murine(IgA,IgG _{2a})			
	References: [Durrani	i (1998)]							
	 Comparison of in the better response 		ion of HIV-1 peptide express	ed in a plant viral	vector – intranasal gav	e			

Ionoclonal Antib	odies							
MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)		
579 447-52D	References: [Gorny (Spear (1993), Conley (1995), Saarloos (1995) (1995), Jagodzinski (19 Boots (1997), Parren (Zolla-Pazner (1999a),	gp160(726–729) gp120() GPXR L HIV-1 infection human(IgG ₃ λ) Donor: Dr. Susan Zolla-Pazner, NYU Med Center NY, NY, or Cellular Products Inc, Buffalo, NY, USA References: [Gorny (1992), Buchbinder (1992), Karwowska (1992b), Gorny (1993), Keller (1993), Cavacini (1993a), Spear (1993), Conley (1994a), Laal (1994), VanCott (1994), Gorny (1994), Moore (1994a), Sattentau(1995), Fontenot (1995), Saarloos (1995), Zolla-Pazner (1995), Zolla-Pazner & Sharpe(1995), Moore (1995a), Moore & Ho(1995), Forthal (1995), Jagodzinski (1996), Trkola (1996a), Sattentau(1996), D'Souza (1997), Binley (1997a), Fouts (1997), Hioe (1997), Boots (1997), Parren (1997b), Hill (1997), Gorny (1997), Inouye (1998), Mondor (1998), Smith (1998), Parren (1998a), Zolla-Pazner (1999a), Zolla-Pazner (1999b), Connor (1998), Gorny (1998), Nyambi (1998), Hioe (1999), Beddows						
	 447-52D: Require 447-52D: 60-fold 447-52D: Reacts v 447-52D: Neutrali 447-52D: Peptide that react well with 	 (1999)] 447-52D: Requires GPXR at the tip of the V3 loop – neutralizes a broad array of B clade lab isolates –Gorny92 447-52D: 60-fold increase in neutralization potency when combined 1:1 with human MAb 588-D –Buchbinder92 447-52D: Reacts with MN, NY5, CDC4, SF2, RF, WM52, and HXB2 –Karwowska92a 447-52D: Neutralizes MN and IIIB: GPGR, and binds SF2: GPGR –Gorny93 447-52D: Peptide phage library showed that any of the residues ADGLMNQRS in the X position tolerated in peptides that react well with the antibody –Keller93 447-52D: Additive neutralization of MN and SF2 when combined with CD4 binding site MAb F105 – supra-additive 						
	 447-52D: Comple 447-52D: Require 447-52D: Neutrali 447-52D: GPGQ affected by identit 447-52D: Mild ox 447-52D: Compet can arise very earl 	ement mediated virolysis of the Vization synergy in combining MAL resulted in enhancy of amino acids flanking idation of carbohydrate nation studies with human sty in infection, comparably	73 loop, common in action with CD4 bir need dissociation - GPGR core - VanChoieties does not alto sera from seroconvele or prior to anti-Vi	er binding –Gorny94 rting individuals showed th 3 antibodies –Moore94d	nary isolates –Conley9 14 T did not bind – bind at anti-CD4 BS antibo	ding		
		447d – Formalin inactivat		6 formalin for 10 hours at	4 degrees was optima	l for		

- inactivation of virus while maintaining epitope integrity –Sattentau95 • 447-52D: Called 447 – The tip of the V3 loop was presented in a mucin backbone – higher valency correlates with
- stronger affinity constant –Fontenot95
- 447-52D: Ab-mediated activation of complement on HIV+ cells is higher than Ab independent activation what has been termed "Ab independent" in fact results in part from IgM in normal human serum that is HIV-cross-reactive -Saarloos95
- 447-52D: Serotyping study using flow-cytometry bound only to GPGR V3 loop tips –Zolla-Pazner95

447-52D cont.

- 447-52D: Neutralization of primary and prototype laboratory HIV-1 isolates using a resting cell assay enhances sensitivity –Zolla-Pazner95a
- 447-52D: Binding affected by identity of amino acids flanking GPGR core poor breadth of primary virus neutralization – Moore 95b
- 447-52D: Review: the V3 loop motif GPGR is not common outside subtype B isolates, MAb 19b is more cross-reactive—Moore95c
- 447-52D: Neutralizing (- complement), no ADCC activity, and no viral enhancing activity –Forthal95
- 447-52D: Called 447-52-D The sulfated polysaccharide curdlan sulfate (CRDS) binds to the Envelope of T-tropic viruses and neutralizes virus – CRDS inhibits binding –Jagodzinski96
- 447-52D: Neutralizes JR-FL strongly inhibits gp120 interaction with CCR-5 in a MIP-1β-CCR-5 competition study

 —Trkola96b
- 447-52D: Review: called 447-52-D only four epitopes have been described which can stimulate a useful neutralizing response to a broad spectrum of primary isolates, represented by the binding sites of MAbs: 447-52-D, 2G12, Fab b12, and 2F5 –Sattentau96
- 447-52D: In a multilaboratory blinded study, failed to consistently neutralize any of nine B clade primary isolates many of these isolates had the GPGR motif at the apex of the V3 loop –D'Souza97
- 447-52D: Study shows neutralization is not predicted by MAb binding to JRFL monomeric gp120, but is associated with oligomeric Env binding – 447-52D bound monomer, oligomer, and neutralized JRFL –Fouts97
- 447-52D: Tested using a resting cell neutralization assay –Hioe97
- 447-52D: Viral binding inhibition by 447-D was correlated with neutralization (all other neutralizing MAbs tested showed some correlation except 2F5) –Ugolini97
- 447-52D: Neutralizes TCLA strains but not primary isolates –Parren97
- 447-52D: Called 447 gp120 can inhibit MIP-1α from binding to CCR5, but this inhibitory effect is blocked by pre-incubation of gp120 with three anti-V3 MAbs: 447, 257, 1027 MAb 670 which binds in the C5 region had no effect –Hill97
- 447-52D: Abs that recognize discontinuous epitopes can identify mimotopes from a phage peptide display library 447-52D has an epitope involving the tip of the V3 loop, that was previously studied with this method –Keller93 in Keller *et al.*, with no competition, LxGPxR was the most common six-mer, 38% of the peptides after competition with a gp120 IIIB ligand (QRGPGR)i, RGPxR was the most common and one peptide had the sequence QRGPGR, showing type specific mimotyopes can be enriched by strain specific ligand competition protocols –Boots97
- 447-52D: Used as a control for comparison to five V3 RF selected antibodies 447-52D was reactive with A, B, and C clade peptides, but not E –Gorny97

447-52D cont.

- 447-52D: Called 447-D 447-D resistance took longer to acquire in virus with the M184V substituted RT, and had
 the form (AAC N to TAC Y) at position 5 of the V3 loop, rather than the GPGR to GPGR resistance found with
 wildtype RT –Inouve98
- 447-52D: Inhibits binding of Hx10 to both CD4 positive and negative HeLa cells –Mondor98
- 447-52D: Called 447-52-D The tip of the MN V3 loop was inserted into cold causing human rhinovirus 14 (HRV14)
 chimeras were immunoselected, and chimeric viruses were neutralized by anti-V3 loop antibodies, and 447-52D was among the Abs used chimeric viruses elicited potent NAbs in guinea pigs against ALA-1 and MN Smith98
- 447-52D: The MAb and Fab binding to the oligomeric form of gp120 and neutralization were highly correlated –
 authors suggest that neutralization is determined by the fraction of Ab sites occupied on a virion irrespective of the
 epitope –Parren98
- 447-52D: Ab from gp120 vaccinated individuals prior to infection, who subsequently became HIV infected, could
 not achieve 90% neutralization of the primary virus by which the individuals were ultimately infected these viruses
 were not particularly refractive to neutralization, as determined by their susceptibility to neutralization by MAbs
 2G12, IgG₁b12, 2F5 and 447-52D –Connor98
- 447-52D: Kinetic parameters were measured, and the association rates were similar, but dissociation rate constants were quite variable for V3 MAbs, 1324E was comparable to 447-52D –Gorny98
- 447-52D: Using a whole virion-ELISA method, 18 human MAbs were tested for their ability to bind to a panel of 9 viruses from clades A, B, D, F, G, and H 447-52D was the most potent and cross-reactive of 18 human MAbs tested and was the only MAb which bound to virions from isolates CA20 (subtype F), CA13 (subtype H), and VI526 (subtype G) –Nyambi98
- 447-52D: Review of clade specificity and anti-V3 HIV-1-Abs –Zolla-Pazner99b
- 447-52D: MAb peptide-reactivity pattern clustered with the immunological related MAbs: 1334, 419, 504, 447, 453 and 537 the core amino acids GP tended to be critical for reactivity in this group 447 reacted with peptides containing GPGR, but also with many lacking this sequence (GPGQ, for example), and it failed to react with 2/14 peptides containing GPGR, illustrating the importance of context –Zolla-Pazner99a
- 447-52D: The presence of leukocyte function-associated molecule 1 (LFA-1) promotes virus infectivity and hinders
 neutralization, and anti-LFA-1 MAbs can enhance the neutralizing effect of anti-HIV V3 MAb 447-52D and anti-HIV
 CD4BS MAb IgG₁b12 non-neutralizing anti-HIV CD4BS MAb 654-D did not become neutralizing in the presence
 of anti-LFA-1 MAbs –Hioe99
- 447-52D: rgp120 derived from a R5X4 subtype B virus, HIV-1 W61D, was used to vaccinate healthy volunteers and the resulting sera were compared with sera from HIV-1 positive subjects and neutralizing MAbs TCLA strains showed enhanced 447-52D neutralization sensitivity relative to PBMC-adapted lines (32X increase between HIV-1(M2424/PBMC(p0)) and HIV-1(M2424/H9(p9)) and a >128X increase between HIV-1(W61D/PBMC) and HIV-1(W61D/SupT1) isolates) –Beddows99

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
580 C8	gp160(727–732)	gp41(727–732 BH10)	PDRPEG	no	mis-folded LAI rgp160	murine(IgG ₁)			
	 C8: Immunotoxi C8: Ab response the dominant responding this region 	in IIIB lab workers was coponse among vaccinees was	oes not mediate cells killing, mpared to gp160 LAI vaccin to this mid-gp41 region, but a infected cells, nor serve as in	e recipients – C8 not among the in	3 was used as a contro fected lab workers – A	l –			
581 B31	gp160(727–734)	gp41(727–734 BH10)	PDRPEGIE		mis-folded LAI	$murine(IgG_1) \\$			
	References: [Abacio • B31: Epitope box	glu (1994)] undaries mapped by peptide	scanning –Abacioglu94						
582 B33	gp160(727–734)	gp41(727–734 BH10)	PDRPEGIE	no	Baculovirus- expressed mis- folded rgp160 IIIB:NL43, MicroGenSys	$murine(IgG_1)$			
	References: [Abacioglu (1994), Bristow (1994)] • B33: There are two MAbs in the literature named B33. See also gp120, LAI 123–142 –Bristow94 • B33: Epitope boundaries mapped by peptide scanning IgG ₁ –Abacioglu94								
583 LA9 (121- 134)	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDR	S no	?	murine(IgM)			
134)	References: [Evans (1989)]								
584 ED6	gp160(728–745) References: [Evans (gp41(735–752 IIIB) [1989)]	DRPEGIEEEGGERDRDR	.S no	?	murine(IgM)			
585 1575	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDR	S no	Poliovirus/gp41 peptide chimera	murine()			
	 References: [Evans (1989), Vella (1993), Buratti (1997)] 1575: Neutralizing activity, less broad than 1577 –Evans89 1575: Core epitope: IEEE – neutralized IIIB, but not RF or MN –Vella93 1575: Study shows that MAb 1575 can recognize the IEEE sequence in both gp41, and in the HPG30 region of the p17 protein – motif is conserved in both regions in different HIV-1 clades –Buratti97 								

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)				
586 1576	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()				
	References: [Vella (1				1 1					
	• 1576: Not neutra	lizing –Vella93								
587 1577	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()				
		Donor: Morag Ferguson (NIBSC)								
		References: [Evans (1989), D'Souza (1991), Vella (1993)]								
	_	• 1577: Raised against IIIB peptide chimera – neutralized African and American HIV-1 lab strains –Evans89								
		• 1577: Non-neutralizing in this multi-lab study –D'Souza91								
	• 1577: Core epitope: ERDRD – could neutralize HIV IIIB and HIV RF –Vella93									
	 1577: UK Medical Research Council AIDS reagent: ARP317 1577: NIH AIDS Research and Reference Reagent Program: 1172 									
	• 1577: NIH AIDS	Research and Reference F	Reagent Program: 1172							
588 1578	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()				
	References: [Evans (1989), Vella (1993)]									
	• 1578: No neutralizing activity – epitope may be formed by regions from both poliovirus and HIV –Evans89									
	• 1578: Core epito	pe: IEEE – in this study, no	eutralized IIIB, but not RF or M	IN –Vella93						
589 1899	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()				
	References: [Vella (1993)]									
	- `	• 1899: Could neutralize HIV IIIB and HIV RF – Vella93								
	1 50 (500 515)	44 (505 550 YYP)			D 11 1 / 11	• ()				
590 1579	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()				
	References: [Vella (1	.993)]								
	• 1579: Core epito	pe: IEEE – neutralized IIII	B, but not RF or MN –Vella93							

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)			
591 1583	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()			
	References: [Evans (1989), Vella (1993), Satten	ntau (1995)]						
	• 1583: Neutralizii	ng activity, less broad than	1577 –Evans89						
			alize HIV IIIB but not HIV RF						
	• 1583: Cytoplasm	ic domain, epitope not exp	osed at the surface of HIV-1 in	fected cells –Sa	ttentau95				
592 1907	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()			
	References: [Vella (1	993)]							
	• 1907: Could not	neutralize HIV IIIB, RF or	MN –Vella93						
593 1908	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()			
	• 1908: Neutralize	References: [Evans (1989), Vella (1993), Sattentau (1995)] • 1908: Neutralized IIIB, but not RF or MN – Vella93 • 1908: Cytoplasmic domain, epitope not exposed at the surface of HIV-1 infected cells – Sattentau95							
594 1909	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Poliovirus/gp41 peptide chimera	murine()			
		References: [Vella (1993)] • 1909: Neutralized HIV IIIB but not HIV RF – Vella93							
595 41-1	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Peptide 735–752 IIIB	$murine(IgM_\kappa)$			
	• 41-1: This antibout gp41(584-609) –		Dalgleish88 seems to have been ns –Dalgleish88	n named the sar	ne as a different MAb	o to			
596 41-2	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Peptide 735–752 IIIB	$murine(IgM_\kappa)$			
	References: [Dalglei • 41-2: Neutralizes	sh (1988)] s HIV-1 but not HIV-2 strai	ns –Dalgleish88						

	MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)		
597	41-3	gp160(728–745)	gp41(735–752 IIIB)	DRPEGIEEEGGERDRDRS	no	Peptide 735–752 IIIB	$murine(IgM_\kappa)$		
		References: [Dalglei							
		• 41-3: Neutralizes	s HIV-1 but not HIV-2 strains	s –Dalgleish88					
598	88-158/02	gp160(732–747) References: [Niedrig		GIEEEGGERDRDRSIR		rgp41 IIIB	$murine(IgG_{2b})$		
				ty at high MAb concentration n – domain non-immunogenic			N		
599	88-158/022	gp160(732–747) References: [Niedrig	gp41(732–752 IIIB)	GIEEEGGERDRDRSIR		rgp41 IIIB	$murine(IgG_{2b})$		
		• 88-158/022: Mil	d inhibition of in vitro activ	ity at high MAb concentration n – domain non-immunogenic			W		
600	88-158/079	gp160(732–747) References: [Niedrig	gp41(732–752 IIIB) g (1992a)]	GIEEEGGERDRDRSIR		rgp41 IIIB	$murine(IgG_1) \\$		
				o at high MAb concentrations nain non-immunogenic in hum			V		
601	В8	gp160(733–741)	gp41(733–741 BH10)	IEEEGGERD	no	mis-folded LAI rgp160	$murine(IgG_1)$		
		References: [Pincus (1993), Abacioglu (1994)]							
		the dominant responding this region	ponse among vaccinees was	mpared to gp160 LAI vaccine to this mid-gp41 region, but no infected cells, nor serve as imn canning –Abacioglu94	ot among the inf	ected lab workers – Ab			
602	DZ	gp160(822-855)	gp41(827–860 BRU)	VAEGTDRVIEVVQGACR- AIRHIPRRIRQGLERIL	L	rec vaccinia gp160 IIIB	$\text{human}(IgG_1\lambda)$		
		References: [Boyer (DZ: Weakly neut RF –Boyer91	· -	des 827–843 and 846–860 of E	BRU – reacted s		d		

MAb ID	HXB2 Location	Author's Location	Sequence	Neutralizing	Immunogen	Species(Isotype)
603 4E10	• 4E10: MAbs gen II proteins – anti-	gp41(824–830 BH10) ther (1992), Buchacher (1994) erated by electrofusion of PE class II Abs are only found in a multi-lab study for ant	4), D'Souza (1994)] BL from HIV-1+ vol in HIV-1 positive pe	ople –Buchacher94		
604 Chim 1	• Chim 1: Binds to	gp120() & McClure(1993), Pincus (1 o gp120 but not to infected as no effect –Pincus93,Pincu	cells - when linked	to ricin A, the immunoto	xin did not mediate	humanized chimpanzee(unk) cell
605 TH9	 References: [D'Souz TH9: Found to n most labs in a mu TH9: A neutraliz HNPCR consister 	gp120(CD4BS) g, Tanox Biosystem, USA ta (1995), Yang (1998)] neutralize MN, but not JRCS alti-laboratory study involving tation assay was developed be ntly revealed HIV DNA and tabs and 5 isolates –Yang98	ng 11 labs–D'Souza based on hemi-neste was shown to be a ra	95 d PCR amplification of the	e LTR (HNPCR) – L'	ΓR-
606 1202-D	References: [Nyamb • 1202-D: Using a viruses from clad but bound well to	Env(CD4BS) Pazner (NYU Med. Center) i (1998)] whole virion-ELISA metholes A, B, D, F, G, and H – Coosoluble gp120 – 1202-D did -D, 558-D and 1202-D had s	D4-BS Abs tended d not bind to any B	o bind weakly without cla clade viruses, and weakly l	de specificity to viri	ons,
607 anti- CD4BS summary	Env(dis)	gp120(CD4BS dis)				()
	Shared componer370, Lys 421 throAnti-CD4 bindin	1993), Moore & Sodroski(19 nts of MAb epitopes and the ough Trp 427 and Asp 457 — g site antibodies (CD4BS) co lence on gp120 residues, but	e discontinuous CD Thali93 ompetitively inhibit	CD4 binding to monomer	ic gp120, and they di	